論文の概要: U.S. Public Opinion on the Governance of Artificial Intelligence
- arxiv url: http://arxiv.org/abs/1912.12835v1
- Date: Mon, 30 Dec 2019 07:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 07:03:45.485593
- Title: U.S. Public Opinion on the Governance of Artificial Intelligence
- Title(参考訳): 人工知能のガバナンスに関する米国の世論
- Authors: Baobao Zhang and Allan Dafoe
- Abstract要約: 既存の研究では、新興技術の規制を形成する上で、公共の機関に対する信頼が大きな役割を果たすことが示されている。
我々は、13のAIガバナンス課題に対するアメリカ人の認識と、AIを責任を持って開発・管理するための政府、企業、およびマルチステークホルダー機関への信頼について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has widespread societal implications, yet social
scientists are only beginning to study public attitudes toward the technology.
Existing studies find that the public's trust in institutions can play a major
role in shaping the regulation of emerging technologies. Using a large-scale
survey (N=2000), we examined Americans' perceptions of 13 AI governance
challenges as well as their trust in governmental, corporate, and
multistakeholder institutions to responsibly develop and manage AI. While
Americans perceive all of the AI governance issues to be important for tech
companies and governments to manage, they have only low to moderate trust in
these institutions to manage AI applications.
- Abstract(参考訳): 人工知能(AI)は広く社会に影響を及ぼすが、社会科学者はこの技術に対する大衆の態度の研究を始めたばかりである。
既存の研究では、新興技術の規制を形成する上で、公共の機関に対する信頼が大きな役割を果たすことが示されている。
大規模調査(n=2000)を用いて、米国人が13のaiガバナンス課題に対する認識と、政府、企業、マルチステークホルダー機関が責任を持ってaiを開発し、管理する信頼について検討した。
アメリカ人は、IT企業や政府にとって重要なAIガバナンスの問題をすべて認識しているが、AIアプリケーションを管理するための機関に対する信頼度は低い。
関連論文リスト
- Public Perception of AI: Sentiment and Opportunity [0.0]
我々は、世界中の4大陸10カ国で1万人の回答者を対象に行われた調査から、AIに対する大衆の認識の結果を提示する。
その結果、現在AIが世界を変えると信じている回答者の同じ割合が、私たちが知っているように、AIを厳しく規制する必要があると信じていることがわかった。
論文 参考訳(メタデータ) (2024-07-22T19:11:28Z) - AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance [18.290959557311552]
AIの公共セクターの利用はここ10年で増加傾向にあるが、最近になって文化の世俗主義に参入する試みが始まっている。
分かりやすいが、政府におけるAIシステムの倫理的かつ効果的な展開を促進することは、非常にありふれた仕事だ。
論文 参考訳(メタデータ) (2024-04-23T01:45:38Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AIは、適応性を考慮して設計された提案である。
政府はAI企業が達成すべき結果に基づく目標を設定する必要がある。
我々は、規制市場がこの目標を達成するのを阻止するインセンティブについて、非常に簡単に対応できることを警告する。
論文 参考訳(メタデータ) (2023-03-06T14:42:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Ethics and Governance of Artificial Intelligence: Evidence from a Survey
of Machine Learning Researchers [0.0]
機械学習(ML)と人工知能(AI)の研究者は、AIの倫理とガバナンスにおいて重要な役割を果たす。
トップクラスのAI/MLカンファレンスで公開した人々の調査を行った。
AI/MLの研究者たちは、国際組織や科学組織に対して高いレベルの信頼を置いている。
論文 参考訳(メタデータ) (2021-05-05T15:23:12Z) - The Sanction of Authority: Promoting Public Trust in AI [4.729969944853141]
我々は、AIの公的な不信は、社会に浸透するAIの信頼性を保証する規制エコシステムの過小開発に由来すると論じている。
このモデルにおける外部監査可能なAIドキュメントの役割と、効果的であることを保証するために行うべき作業について、詳しく説明する。
論文 参考訳(メタデータ) (2021-01-22T22:01:30Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。