論文の概要: Data-Driven Discovery of Coarse-Grained Equations
- arxiv url: http://arxiv.org/abs/2002.00790v5
- Date: Mon, 27 Jul 2020 16:57:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 11:54:31.839234
- Title: Data-Driven Discovery of Coarse-Grained Equations
- Title(参考訳): 粗粒度方程式のデータ駆動発見
- Authors: Joseph Bakarji, Daniel M. Tartakovsky
- Abstract要約: マルチスケールモデリングとシミュレーションは、シミュレーションデータの学習がそのような発見につながる2つの分野である。
我々は、そのようなモデルの人間の発見を、2つのモードで実行できるスパース回帰に基づく機械学習戦略に置き換える。
一連の例は、方程式発見に対する我々のアプローチの正確性、堅牢性、限界を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical (machine learning) tools for equation discovery require large
amounts of data that are typically computer generated rather than
experimentally observed. Multiscale modeling and stochastic simulations are two
areas where learning on simulated data can lead to such discovery. In both, the
data are generated with a reliable but impractical model, e.g., molecular
dynamics simulations, while a model on the scale of interest is uncertain,
requiring phenomenological constitutive relations and ad-hoc approximations. We
replace the human discovery of such models, which typically involves
spatial/stochastic averaging or coarse-graining, with a machine-learning
strategy based on sparse regression that can be executed in two modes. The
first, direct equation-learning, discovers a differential operator from the
whole dictionary. The second, constrained equation-learning, discovers only
those terms in the differential operator that need to be discovered, i.e.,
learns closure approximations. We illustrate our approach by learning a
deterministic equation that governs the spatiotemporal evolution of the
probability density function of a system state whose dynamics are described by
a nonlinear partial differential equation with random inputs. A series of
examples demonstrates the accuracy, robustness, and limitations of our approach
to equation discovery.
- Abstract(参考訳): 方程式発見のための統計(機械学習)ツールは、実験的に観測されるよりもコンピュータが生成する大量のデータを必要とする。
マルチスケールモデリングと確率シミュレーションは、シミュレーションデータの学習がそのような発見につながる2つの分野である。
双方とも、データは、例えば分子動力学シミュレーションのような信頼性のある非現実的なモデルで生成されるが、関心のスケールに関するモデルは不確実であり、現象論的構成的関係とアドホック近似を必要とする。
一般に,空間的・統計的平均化や粗粒化を伴うモデルの発見を,2つのモードで実行可能な疎回帰に基づく機械学習戦略に置き換える。
最初の直接方程式学習は、辞書全体から微分作用素を発見する。
第二の制約付き方程式学習は、発見すべき微分作用素の項(つまり閉包近似)のみを発見する。
本稿では,確率密度関数の時空間的進化をランダムな入力を持つ非線形偏微分方程式で記述する決定論的方程式を学習することにより,本手法について述べる。
一連の例は、方程式発見に対する我々のアプローチの正確性、堅牢性、限界を示している。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
本稿では,データからのスパース制御方程式の深部生成モデルを用いた動的モデリングフレームワークHyperSINDyを紹介する。
一度訓練すると、HyperSINDyは、係数が白色雑音によって駆動される微分方程式を介して力学を生成する。
実験では、HyperSINDyはデータと一致するように学習度をスケーリングすることで、基底的真理支配方程式を復元する。
論文 参考訳(メタデータ) (2023-10-07T14:41:59Z) - Towards true discovery of the differential equations [57.089645396998506]
微分方程式探索は、解釈可能なモデルを開発するために使用される機械学習サブフィールドである。
本稿では,専門家の入力を伴わない独立方程式発見のための前提条件とツールについて検討する。
論文 参考訳(メタデータ) (2023-08-09T12:03:12Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
機械学習と辞書ベースの学習を数値解析ツールと組み合わせ,微分方程式の制御を探索する。
我々は、サンプリング体制を超えてよりよく一般化しやすい解釈可能で準同型モデルを得る。
生物ネットワークに通常現れる有理非線形性を含む支配方程式の拡張について論じる。
論文 参考訳(メタデータ) (2021-05-11T08:46:51Z) - Model discovery in the sparse sampling regime [0.0]
深層学習が部分微分方程式のモデル発見をいかに改善できるかを示す。
その結果、ディープラーニングに基づくモデル発見は、基礎となる方程式を復元することができる。
我々は合成集合と実験集合の両方について主張する。
論文 参考訳(メタデータ) (2021-05-02T06:27:05Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。