論文の概要: Gaussian Variational State Estimation for Nonlinear State-Space Models
- arxiv url: http://arxiv.org/abs/2002.02620v4
- Date: Fri, 1 Oct 2021 04:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 03:41:38.659157
- Title: Gaussian Variational State Estimation for Nonlinear State-Space Models
- Title(参考訳): 非線形状態空間モデルに対するガウス変分状態推定
- Authors: Jarrad Courts, Adrian Wills and Thomas B. Sch\"on
- Abstract要約: 非線形状態空間モデルに対するフィルタリングと平滑化の両面から状態推定の問題を考察する。
我々は変分推論に基づく仮定ガウス解を開発し、必要な分布を近似する柔軟なが原則化されたメカニズムの鍵となる利点を提供する。
- 参考スコア(独自算出の注目度): 0.3222802562733786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the problem of state estimation, in the context of both
filtering and smoothing, for nonlinear state-space models is considered. Due to
the nonlinear nature of the models, the state estimation problem is generally
intractable as it involves integrals of general nonlinear functions and the
filtered and smoothed state distributions lack closed-form solutions. As such,
it is common to approximate the state estimation problem. In this paper, we
develop an assumed Gaussian solution based on variational inference, which
offers the key advantage of a flexible, but principled, mechanism for
approximating the required distributions. Our main contribution lies in a new
formulation of the state estimation problem as an optimisation problem, which
can then be solved using standard optimisation routines that employ exact
first- and second-order derivatives. The resulting state estimation approach
involves a minimal number of assumptions and applies directly to nonlinear
systems with both Gaussian and non-Gaussian probabilistic models. The
performance of our approach is demonstrated on several examples; a challenging
scalar system, a model of a simple robotic system, and a target tracking
problem using a von Mises-Fisher distribution and outperforms alternative
assumed Gaussian approaches to state estimation.
- Abstract(参考訳): 本稿では,非線形状態空間モデルに対して,フィルタリングと平滑化の両方の文脈において状態推定の問題を考える。
モデルの非線形性のため、一般の非線形関数の積分を含む状態推定問題は一般に難解であり、フィルタされた状態分布は閉形式解を持たない。
したがって、状態推定問題を近似することが一般的である。
本稿では,変分推論に基づく仮定ガウス解を開発し,所望の分布を近似する機構として,フレキシブルだが原理的な鍵となる利点を提供する。
我々の主な貢献は、状態推定問題を最適化問題として新しい定式化することであり、それは完全な一階および二階微分を用いる標準最適化ルーチンを用いて解くことができる。
結果として生じる状態推定アプローチは最小限の仮定を伴い、ガウス的および非ガウス的確率モデルの両方で非線形系に直接適用される。
本手法の性能は,いくつかの例で実証されている: 挑戦的なスカラーシステム,単純なロボットシステムのモデル,およびvon mises-fisher分布を用いた目標追跡問題。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Variational Nonlinear Kalman Filtering with Unknown Process Noise
Covariance [24.23243651301339]
本稿では,近似ベイズ推定原理に基づく非線形状態推定とモデルパラメータの同定手法を提案する。
シミュレーションおよび実世界のデータを用いて,レーダ目標追尾法の性能を検証した。
論文 参考訳(メタデータ) (2023-05-06T03:34:39Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Amortized backward variational inference in nonlinear state-space models [0.0]
変分推論を用いた一般状態空間モデルにおける状態推定の問題点を考察する。
仮定を混合することにより、加法的状態汎関数の期待の変動近似が、観測数において最も直線的に増加する誤差を誘導することを初めて確立した。
論文 参考訳(メタデータ) (2022-06-01T08:35:54Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems [0.0]
実生活の非線形系では、正確な非線形性の形式はよく知られておらず、既知の支配方程式は特定の仮定や近似に基づいていることが多い。
モデル形状の誤差を識別するだけでなく、既知のが近似的な支配方程式の予測能力を向上させるためにも活用する、新しいグレーボックスモデリング手法を提案する。
論文 参考訳(メタデータ) (2021-09-01T16:29:21Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
最適制御問題の時間不変不確かさを明示的に考慮する新しいアルゴリズムを提案する。
本稿では, 非線形変換の平均および分散推定値を得るために, この組み合わせを効率的に利用することを提案する。
最適制御問題に対する確率的目標と確率的制約の両方を定式化する方法を示す。
論文 参考訳(メタデータ) (2021-03-09T14:25:08Z) - Variational State and Parameter Estimation [0.8049701904919515]
本稿では,非線形状態空間モデルにおけるベイズ状態とモデルパラメータの計算問題について考察する。
変化的アプローチは、望ましい、難解な分布を近似する仮定密度を提供するために使用される。
提案手法は2つの数値例で,最先端のハミルトニアンモンテカルロと比較した。
論文 参考訳(メタデータ) (2020-12-14T05:35:29Z) - Sparse Identification of Nonlinear Dynamical Systems via Reweighted
$\ell_1$-regularized Least Squares [62.997667081978825]
本研究は, 非線形系の制御方程式をノイズ状態測定から復元するための繰り返しスパース規則化回帰法を提案する。
本研究の目的は、状態測定ノイズの存在下での手法の精度とロバスト性を改善することである。
論文 参考訳(メタデータ) (2020-05-27T08:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。