A practical and efficient approach for Bayesian quantum state estimation
- URL: http://arxiv.org/abs/2002.10354v1
- Date: Mon, 24 Feb 2020 16:32:28 GMT
- Title: A practical and efficient approach for Bayesian quantum state estimation
- Authors: Joseph M. Lukens, Kody J. H. Law, Ajay Jasra, and Pavel Lougovski
- Abstract summary: We introduce an improved, self-contained approach for Bayesian quantum state estimation.
Our formulation relies on highly efficient preconditioned Crank--Nicolson sampling and a pseudo-likelihood.
We theoretically analyze the computational cost, and provide explicit examples of inference for both actual and simulated datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian inference is a powerful paradigm for quantum state tomography,
treating uncertainty in meaningful and informative ways. Yet the numerical
challenges associated with sampling from complex probability distributions
hampers Bayesian tomography in practical settings. In this Article, we
introduce an improved, self-contained approach for Bayesian quantum state
estimation. Leveraging advances in machine learning and statistics, our
formulation relies on highly efficient preconditioned Crank--Nicolson sampling
and a pseudo-likelihood. We theoretically analyze the computational cost, and
provide explicit examples of inference for both actual and simulated datasets,
illustrating improved performance with respect to existing approaches.
Related papers
- A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Benchmarking Bayesian quantum estimation [0.0]
This work focuses on the benchmarking of protocols implementing Bayesian estimations.
By comparing different figures of merits, evidence is provided in favor of using the median of the quadratic error in the estimations.
These results find natural applications to practical problems within the quantum estimation framework.
arXiv Detail & Related papers (2024-01-26T14:29:31Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Demonstration of machine-learning-enhanced Bayesian quantum state
estimation [0.0]
We experimentally realize an approach for defining custom prior distributions that are automatically tuned using machine learning.
We show that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution.
arXiv Detail & Related papers (2022-12-15T18:41:15Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
The quality of classic Bayesian inference depends critically on whether observations conform with the assumed data generating model.
We propose a variational inference method that, in a principled way, can simultaneously scale to large datasets.
We illustrate the applicability of our approach in diverse simulated and real datasets, and various statistical models.
arXiv Detail & Related papers (2020-08-31T13:47:12Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - A machine learning approach to Bayesian parameter estimation [0.0]
We formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation.
We show that the network's posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information.
arXiv Detail & Related papers (2020-06-03T16:33:21Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.