論文の概要: Estimating Multiple Precision Matrices with Cluster Fusion
Regularization
- arxiv url: http://arxiv.org/abs/2003.00371v1
- Date: Sun, 1 Mar 2020 01:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 12:57:06.163585
- Title: Estimating Multiple Precision Matrices with Cluster Fusion
Regularization
- Title(参考訳): クラスター融合正規化による多重精度行列の推定
- Authors: Bradley S. Price and Aaron J. Molstad and Ben Sherwood
- Abstract要約: 異なるクラスから複数の精度行列を推定するペナライズされた可能性を提案する。
既存の手法の多くは、精度行列間の関係に関する情報を含まないか、あるいはこの情報を先入観として要求する。
- 参考スコア(独自算出の注目度): 0.90238471756546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a penalized likelihood framework for estimating multiple precision
matrices from different classes. Most existing methods either incorporate no
information on relationships between the precision matrices, or require this
information be known a priori. The framework proposed in this article allows
for simultaneous estimation of the precision matrices and relationships between
the precision matrices, jointly. Sparse and non-sparse estimators are proposed,
both of which require solving a non-convex optimization problem. To compute our
proposed estimators, we use an iterative algorithm which alternates between a
convex optimization problem solved by blockwise coordinate descent and a
k-means clustering problem. Blockwise updates for computing the sparse
estimator require solving an elastic net penalized precision matrix estimation
problem, which we solve using a proximal gradient descent algorithm. We prove
that this subalgorithm has a linear rate of convergence. In simulation studies
and two real data applications, we show that our method can outperform
competitors that ignore relevant relationships between precision matrices and
performs similarly to methods which use prior information often uknown in
practice.
- Abstract(参考訳): 異なるクラスから複数の精度行列を推定するペナル化可能性フレームワークを提案する。
既存のほとんどの手法では、精度行列間の関係に関する情報は含まないか、あるいはこの情報を事前情報と呼ぶ必要がある。
本稿では, 精度行列と精度行列の関係を同時に推定する枠組みを提案する。
非凸最適化問題を解く必要のあるスパースおよび非スパース推定器を提案する。
提案した推定器の計算には,ブロックワイド座標降下による凸最適化問題とk平均クラスタリング問題とを交互に行う反復アルゴリズムを用いる。
スパース推定器のブロックワイズ更新は、近似勾配勾配法を用いて解く弾性ネットペナライズされた精度行列推定問題を解く必要がある。
我々は、この部分代数が線形収束率を持つことを証明する。
シミュレーション研究と2つの実データ応用において,本手法は,精度行列間の関連関係を無視し,実際に知られていない先行情報を用いる手法と類似した手法を実現できることを示す。
関連論文リスト
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
中心行列および非標準行列に対するフロベニウスノルムにおける低ランク近似誤差の解析のための枠組みを提案する。
最小限の仮定の下では、期待と確率の正確な境界を導出する。
私たちの境界には、プロパティを導出し、実践的な選択を動機付けるための明確な解釈があります。
論文 参考訳(メタデータ) (2024-05-08T04:51:56Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
本研究では,有界ノルムを持つ埋め込みベクトルに対するアテンションスコア正規化定数の線形時間近似を提案する。
推定公式の精度は、競合するカーネルメソッドを桁違いに上回る。
提案アルゴリズムは高度に解釈可能であり,任意の埋め込み問題に容易に適応できる。
論文 参考訳(メタデータ) (2023-03-30T15:48:26Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
現在のアルゴリズムはブロック座標降下法や近点アルゴリズムを用いて設計されている。
本稿では,2次元投影法に基づく新しいアルゴリズムを提案し,慎重に設計された探索方向と変数分割方式を取り入れた。
合成および実世界のデータセットに対する実験結果から,提案アルゴリズムは最先端の手法と比較して計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-03T14:39:10Z) - Learning a Compressive Sensing Matrix with Structural Constraints via
Maximum Mean Discrepancy Optimization [17.104994036477308]
本稿では,圧縮センシング関連回復問題に対する測定行列を得るための学習に基づくアルゴリズムを提案する。
ニューラルネットワーク関連のトピックにおけるこのようなメトリクスの最近の成功は、機械学習に基づく問題の解決策を動機付けている。
論文 参考訳(メタデータ) (2021-10-14T08:35:54Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。