論文の概要: Some Geometrical and Topological Properties of DNNs' Decision Boundaries
- arxiv url: http://arxiv.org/abs/2003.03687v2
- Date: Fri, 16 Apr 2021 00:33:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 19:23:18.704687
- Title: Some Geometrical and Topological Properties of DNNs' Decision Boundaries
- Title(参考訳): DNNの意思決定境界の幾何的および位相的特性
- Authors: Bo Liu, Mengya Shen
- Abstract要約: ディープニューラルネットワーク(DNN)による決定領域の幾何学的および位相的性質の探索に微分幾何学を用いる。
微分幾何学におけるガウス・ボネット・シェン定理に基づいて、コンパクトな決定境界のオイラー特性を計算する方法を提案する。
- 参考スコア(独自算出の注目度): 4.976129960952446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Geometry and topology of decision regions are closely related with
classification performance and robustness against adversarial attacks. In this
paper, we use differential geometry to theoretically explore the geometrical
and topological properties of decision regions produced by deep neural networks
(DNNs). The goal is to obtain some geometrical and topological properties of
decision boundaries for given DNN models, and provide some principled guidance
to design and regularization of DNNs. First, we present the curvatures of
decision boundaries in terms of network parameters, and give sufficient
conditions on network parameters for producing flat or developable decision
boundaries. Based on the Gauss-Bonnet-Chern theorem in differential geometry,
we then propose a method to compute the Euler characteristics of compact
decision boundaries, and verify it with experiments.
- Abstract(参考訳): 決定領域の幾何学とトポロジーは、敵の攻撃に対する分類性能とロバスト性と密接に関連している。
本稿では,ディープニューラルネットワーク(dnn)によって生成された決定領域の幾何学的および位相的性質を理論的に探究するために微分幾何学を用いる。
目的は、与えられたDNNモデルに対する決定境界の幾何的および位相的特性を取得し、DNNの設計と正規化に関する原則的なガイダンスを提供することである。
まず、ネットワークパラメータの観点から決定境界の曲率を示し、フラットまたは開発可能な決定境界を生成するためのネットワークパラメータに十分な条件を与える。
微分幾何学におけるガウス・ボネット・コーンの定理に基づいて、コンパクトな決定境界のオイラー特性を計算し、実験により検証する手法を提案する。
関連論文リスト
- Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Neural PDE Solvers for Irregular Domains [25.673617202478606]
不規則な形状の幾何学的境界を持つ領域上の偏微分方程式をニューラルネットワークで解く枠組みを提案する。
我々のネットワークは入力としてドメインの形をとり、新しい(目に見えない)不規則なドメインに一般化することができる。
論文 参考訳(メタデータ) (2022-11-07T00:00:30Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
偏微分方程式(PDE)の高精度かつ安価な解を可能にする物理インフォームドニューラルネットワーク(PINN)の新しい数値スキームを提案する。
提案手法は、物理領域とディリクレ境界条件を定義するのに必要な許容的なNURBSパラメトリゼーションとPINNソルバを組み合わせたものである。
論文 参考訳(メタデータ) (2022-10-25T10:35:45Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
本稿では,偏微分方程式の深層学習におけるトレーニングを改善するために,人工ニューラルネットワークにおける幾何対応トライアル関数を提案する。
均質なディリクレ境界条件を正確に課すために、トライアル関数は、PINN近似により$phi$と乗算される。
アフィン境界と曲線境界を持つ領域上の線形および非線形境界値問題に対する数値解を提案する。
論文 参考訳(メタデータ) (2021-04-17T03:02:52Z) - Fusing the Old with the New: Learning Relative Camera Pose with
Geometry-Guided Uncertainty [91.0564497403256]
本稿では,ネットワークトレーニング中の2つの予測系間の確率的融合を含む新しい枠組みを提案する。
本ネットワークは,異なる対応間の強い相互作用を強制することにより学習を駆動する自己追跡グラフニューラルネットワークを特徴とする。
学習に適したモーションパーマリゼーションを提案し、難易度の高いDeMoNおよびScanNetデータセットで最新のパフォーマンスを達成できることを示します。
論文 参考訳(メタデータ) (2021-04-16T17:59:06Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。