QuASeR -- Quantum Accelerated De Novo DNA Sequence Reconstruction
- URL: http://arxiv.org/abs/2004.05078v1
- Date: Fri, 10 Apr 2020 15:46:52 GMT
- Title: QuASeR -- Quantum Accelerated De Novo DNA Sequence Reconstruction
- Authors: Aritra Sarkar, Zaid Al-Ars, Koen Bertels
- Abstract summary: We present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly.
Details of the implementation are discussed for the various layers of the quantum full-stack accelerator design.
- Score: 2.4192504570921622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we present QuASeR, a reference-free DNA sequence
reconstruction implementation via de novo assembly on both gate-based and
quantum annealing platforms. Each one of the four steps of the implementation
(TSP, QUBO, Hamiltonians and QAOA) is explained with simple proof-of-concept
examples to target both the genomics research community and quantum application
developers in a self-contained manner. The details of the implementation are
discussed for the various layers of the quantum full-stack accelerator design.
We also highlight the limitations of current classical simulation and available
quantum hardware systems. The implementation is open-source and can be found on
https://github.com/prince-ph0en1x/QuASeR.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - Enhanced feature encoding and classification on distributed quantum hardware [0.0]
We propose a novel feature map optimization strategy for Quantum Support Vector Machines (QSVMs)
We take into account backend-specific parameters, including qubit connectivity, native gate sets, and circuit depth, which are critical factors in noisy quantum devices.
The study was carried out by partitioning each quantum processing unit (QPU) into several sub-units with the same topology to implement individual QSVM instances.
arXiv Detail & Related papers (2024-12-02T16:14:37Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - QKAN: Quantum Kolmogorov-Arnold Networks [0.6597195879147557]
A new neural network architecture, called Kolmogorov-Arnold Networks (KAN), has emerged, inspired by the compositional structure of the Kolmogorov-Arnold representation theorem.
Our QKAN exploits powerful quantum linear algebra tools, including quantum singular value transformation, to apply parameterized activation functions on the edges of the network.
QKAN is based on block-encodings, making it inherently suitable for direct quantum input.
arXiv Detail & Related papers (2024-10-06T10:11:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Signal Processing with the one-dimensional quantum Ising model [0.0]
Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine properties of quantum systems.
We provide examples and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation, to quantum control.
arXiv Detail & Related papers (2023-09-08T18:01:37Z) - An Optimized Quantum Implementation of ISD on Scalable Quantum Resources [2.274915755738124]
We show that Prange's ISD algorithm can be implemented rather efficiently on a quantum computer.
We leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs.
arXiv Detail & Related papers (2021-12-12T06:01:10Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.