論文の概要: BlackBox: Generalizable Reconstruction of Extremal Values from
Incomplete Spatio-Temporal Data
- arxiv url: http://arxiv.org/abs/2005.02140v3
- Date: Thu, 8 Oct 2020 16:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 03:31:00.260649
- Title: BlackBox: Generalizable Reconstruction of Extremal Values from
Incomplete Spatio-Temporal Data
- Title(参考訳): blackbox:不完全時空間データからの極値の一般化
- Authors: Tomislav Ivek, Domagoj Vlah
- Abstract要約: 本稿では、畳み込み深層ニューラルネットワークを用いて、欠落したデータを再構築する枠組みを提案する。
任意の特定のモデルによって導入されたバイアスを軽減するために、予測アンサンブルを構築する。
本手法は, 複雑な海洋系の動的特徴を正確に再現するために, 専門家の知識に頼らない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe our submission to the Extreme Value Analysis 2019 Data Challenge
in which teams were asked to predict extremes of sea surface temperature
anomaly within spatio-temporal regions of missing data. We present a
computational framework which reconstructs missing data using convolutional
deep neural networks. Conditioned on incomplete data, we employ
autoencoder-like models as multivariate conditional distributions from which
possible reconstructions of the complete dataset are sampled using imputed
noise. In order to mitigate bias introduced by any one particular model, a
prediction ensemble is constructed to create the final distribution of extremal
values. Our method does not rely on expert knowledge in order to accurately
reproduce dynamic features of a complex oceanographic system with minimal
assumptions. The obtained results promise reusability and generalization to
other domains.
- Abstract(参考訳): 不足データの時空間領域内における海面温度異常の極端をチームが予測するように求められた、Extreme Value Analysis 2019 Data Challengeへの私たちの提出について説明する。
本稿では,畳み込み型ディープニューラルネットワークを用いて,行方不明データを再構成する計算フレームワークを提案する。
不完全なデータに基づいて,完全データセットの再構成が可能な多変量条件分布としてオートエンコーダのようなモデルを用いる。
任意の特定のモデルによって導入されたバイアスを軽減するため、予測アンサンブルを構築し、極値の最終分布を生成する。
本手法は, 複雑な海洋系の動的特徴を最小限の仮定で正確に再現するために, 専門家の知識に頼らない。
得られた結果は再利用性と他の領域への一般化を約束する。
関連論文リスト
- SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
本研究では3次元地震データに適した新しい拡散モデル再構成フレームワークを提案する。
拡散モデルに3次元ニューラルネットワークアーキテクチャを導入し、2次元拡散モデルを3次元空間に拡張することに成功した。
本手法は、フィールドデータセットと合成データセットの両方に適用した場合、より優れた再構成精度を示す。
論文 参考訳(メタデータ) (2024-03-18T05:10:13Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
正規化フロー(NF)は、複雑な実世界のデータ分布を正確にモデル化することが示されているフレキシブルな明示的な生成モデルである。
摂動分布から標本を与えられた多様体上の最も可能性の高い点を復元する最適化目的を提案する。
最後に、NFsの明示的な性質、すなわち、ログのような勾配とログのような勾配から抽出された表面正規化を利用する3次元点雲に焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:07:59Z) - Reconstruction of Incomplete Wildfire Data using Deep Generative Models [0.0]
我々は、Missing Data Conditional-Weighted Autocoderen (CMIWAE)と呼ばれる強力な変分オートエンコーダモデルの変種を示す。
我々の深層変数生成モデルは機能エンジニアリングをほとんど必要とせず、必ずしもデータチャレンジのスコアの特異性に依存していません。
論文 参考訳(メタデータ) (2022-01-16T23:27:31Z) - Harmless interpolation in regression and classification with structured
features [21.064512161584872]
過度にパラメータ化されたニューラルネットワークは、ノイズの多いトレーニングデータに完全に適合するが、テストデータではうまく一般化する。
再生カーネルヒルベルト空間における上界回帰と分類リスクの一般かつ柔軟な枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-09T15:12:26Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Learning from Incomplete Features by Simultaneous Training of Neural
Networks and Sparse Coding [24.3769047873156]
本稿では,不完全な特徴を持つデータセット上で分類器を訓練する問題に対処する。
私たちは、各データインスタンスで異なる機能のサブセット(ランダムまたは構造化)が利用できると仮定します。
新しい教師付き学習法が開発され、サンプルあたりの機能のサブセットのみを使用して、一般的な分類器を訓練する。
論文 参考訳(メタデータ) (2020-11-28T02:20:39Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。