論文の概要: Graphical continuous Lyapunov models
- arxiv url: http://arxiv.org/abs/2005.10483v1
- Date: Thu, 21 May 2020 06:50:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:03:23.505312
- Title: Graphical continuous Lyapunov models
- Title(参考訳): グラフ連続リアプノフモデル
- Authors: Gherardo Varando and Niels Richard Hansen
- Abstract要約: 本稿では,$ell_$-penalized loss minimizationによる構造学習手法を提案する。
提案手法は,シミュレーション研究において,代替構造学習アルゴリズムより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.5524804393257919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The linear Lyapunov equation of a covariance matrix parametrizes the
equilibrium covariance matrix of a stochastic process. This parametrization can
be interpreted as a new graphical model class, and we show how the model class
behaves under marginalization and introduce a method for structure learning via
$\ell_1$-penalized loss minimization. Our proposed method is demonstrated to
outperform alternative structure learning algorithms in a simulation study, and
we illustrate its application for protein phosphorylation network
reconstruction.
- Abstract(参考訳): 共分散行列の線型リアプノフ方程式は確率過程の平衡共分散行列をパラメータ化する。
このパラメトリゼーションは新たなグラフィカルモデルクラスとして解釈でき、モデルクラスが疎外化の下でどのように振る舞うかを示し、$\ell_1$-penalized loss minimizationによる構造学習法を導入する。
提案手法は, シミュレーション研究において, 代替構造学習アルゴリズムよりも優れており, タンパク質リン酸化ネットワーク再構築への応用を示す。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - Graph Structure Inference with BAM: Introducing the Bilinear Attention
Mechanism [31.99564199048314]
本稿では,教師付きグラフ構造学習のためのニューラルネットワークモデルを提案する。
モデルは可変形状および結合された入力データで訓練される。
本手法は, 線形および多種多様な非線形依存関係に対して, 堅牢な一般化性を示す。
論文 参考訳(メタデータ) (2024-02-12T15:48:58Z) - An Orthogonal Polynomial Kernel-Based Machine Learning Model for
Differential-Algebraic Equations [0.24578723416255746]
本稿では,LS-SVR機械学習モデル,重み付き残差法,レジェンダ間の接続を確立することにより,一般DAEを演算子形式で解く新しい手法を提案する。
提案手法の有効性を評価するため,非線形システム,分数次微分,積分微分,部分DAEなど,様々なDAEシナリオを考慮したシミュレーションを行った。
論文 参考訳(メタデータ) (2024-01-25T18:37:17Z) - The Power of Learned Locally Linear Models for Nonlinear Policy
Optimization [26.45568696453259]
本稿では,一般的な非線形システムに対する簡易な戦略の厳密な分析を行う。
非線形系力学の局所線形モデルの推定と$mathttiLQR$のようなポリシー更新の繰り返しを行うアルゴリズムを解析する。
論文 参考訳(メタデータ) (2023-05-16T17:13:00Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。