論文の概要: Fault-tolerant quantum error correction using error weight parities
- arxiv url: http://arxiv.org/abs/2006.03068v3
- Date: Wed, 13 Oct 2021 16:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 04:11:04.311661
- Title: Fault-tolerant quantum error correction using error weight parities
- Title(参考訳): 誤差重みパリティを用いたフォールトトレラント量子誤差補正
- Authors: Theerapat Tansuwannont, Debbie Leung
- Abstract要約: 不完全なプリミティブを用いた量子誤り訂正では、いくつかの断層から高い重みの誤差が大きな懸念事項である。
安定化器符号の任意の重みのパウリ誤差を補正できるウェイトエラー補正法(WPEC)を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum error correction using imperfect primitives, errors of high weight
arising from a few faults are major concerns since they might not be
correctable by the quantum error correcting code. Fortunately, some errors of
different weights are logically equivalent and the same correction procedure is
applicable to all equivalent errors, thus correcting high-weight errors is
sometimes possible. In this work, we introduce a technique called weight parity
error correction (WPEC) which can correct Pauli error of any weight in some
stabilizer codes provided that the parity of the weight of the error is known.
We show that the technique is applicable to concatenated codes constructed from
the [[7,1,3]] Steane code or the [[23,1,7]] Golay code. We also provide a
fault-tolerant error correction protocol using WPEC for the [[49,1,9]]
concatenated Steane code which can correct up to 3 faults and requires only 2
ancillas.
- Abstract(参考訳): 不完全なプリミティブを用いた量子誤差補正では、いくつかの誤りから生じる重みの誤りは、量子エラー訂正符号では修正できない可能性があるため、主要な懸念事項である。
幸いなことに、異なる重みの誤差は論理的に等価であり、同じ補正手順はすべての等価な誤りに適用できるため、高重みの誤りを修正することは時々可能である。
本研究では,重みの重みのパリティが知られているような安定化符号において,任意の重みのパウリ誤差を補正できる重みのパリティ補正(WPEC)手法を提案する。
この手法は[[7,1,3]]ステアンコードまたは[[23,1,7]]ゴーレイコードから構築された結合コードに適用できることを示す。
また,[49,1,9]]結合ステインコードに対してwpecを使用したフォールトトレラントなエラー訂正プロトコルも提供しています。
関連論文リスト
- Concatenating quantum error-correcting codes with decoherence-free subspaces and vice versa [0.0]
量子エラー訂正符号(QECC)とデコヒーレンスフリー部分空間符号(DFS)は、ある種のエラーに対処するための能動的かつ受動的手段を提供する。
QECCとDFSコードの結合により、退化コードがアクティブかつパッシブに修正された部分に分割される。
十分に相関の取れた誤りに対して、内部コードとしてのDSFとの結合は、より良い絡み合いの忠実性をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-13T17:48:12Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
共振結合された一対のトランスモンからなる「デュアルレール量子ビット」が高コヒーレントな消去量子ビットを形成することを示す。
我々は、チェック毎に0.1%$ dephasingエラーを導入しながら、消去エラーの中間回路検出を実演する。
この研究は、ハードウェア効率の量子誤り訂正のための魅力的なビルディングブロックとして、トランスモンベースのデュアルレールキュービットを確立する。
論文 参考訳(メタデータ) (2023-07-17T18:00:01Z) - SoftCorrect: Error Correction with Soft Detection for Automatic Speech
Recognition [116.31926128970585]
我々は,明示的かつ暗黙的な誤り検出の限界を回避するため,ソフトエラー検出機構を備えたSoftCorrectを提案する。
暗黙的な誤り検出とCTC損失と比較すると、SoftCorrectはどの単語が誤りであるかを明示的な信号を提供する。
AISHELL-1とAidatatangデータセットの実験では、SoftCorrectはそれぞれ26.1%と9.4%のCER削減を達成した。
論文 参考訳(メタデータ) (2022-12-02T09:11:32Z) - Concatenation Schemes for Topological Fault-tolerant Quantum Error
Correction [1.6114012813668934]
本稿では、3次元クラスタ状態と小さな誤り検出符号の結合に基づくフォールトトレラントな量子誤り訂正手法を提案する。
このような変換が可能な一組の符号を見つけ、その性能を標準回路レベルの分極モデルと比較する。
私たちの最高のパフォーマンススキームは、古典的なコードとの結合に基づくもので、閾値を16.5%で改善し、時空のオーバーヘッドを32%で削減します。
論文 参考訳(メタデータ) (2022-09-20T00:08:28Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
量子ビットおよび量子ビットとして表される高次量子系の誤りを補正するための新しい量子誤り訂正符号のクラスについて検討する。
これらの符号は、元のグラフ理論による量子エラーの集合の表現に由来する。
本稿では,従来よりも高い符号化率を実現する完全相関雑音に対する最適符号化と,単一キューディットに対する最小符号化の2つの例を示す。
論文 参考訳(メタデータ) (2021-10-16T00:04:24Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Short Codes for Quantum Channels with One Prevalent Pauli Error Type [6.548580592686076]
本稿では,安定器QECCの設計について検討し,一般的なパウリ誤差の数値egと,指定された型のeZパウリ誤差を補正する方法について検討する。
これらの符号は、量子チャネルが非対称であるとき、ある種のエラーが他のものよりも頻繁に発生するという点で興味深い。
論文 参考訳(メタデータ) (2021-04-09T13:51:51Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Linear programming bounds for quantum amplitude damping codes [9.975163460952047]
本稿では、振幅減衰(AD)誤差に対する量子量列挙器を導入し、近似量子誤差補正の枠組みの中で機能する。
これにより、AQEC ADコードに対応するパラメータが存在しない場合にのみ実現不可能な線形プログラムを確立することができる。
論文 参考訳(メタデータ) (2020-01-12T18:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。