Enhancing VQE Convergence for Optimization Problems with
Problem-specific Parameterized Quantum Circuits
- URL: http://arxiv.org/abs/2006.05643v3
- Date: Thu, 28 Dec 2023 11:46:21 GMT
- Title: Enhancing VQE Convergence for Optimization Problems with
Problem-specific Parameterized Quantum Circuits
- Authors: Atsushi Matsuo, Yudai Suzuki, Ikko Hamamura, Shigeru Yamashita
- Abstract summary: Variational Quantum Eigensolver (VQE) algorithm is gaining interest for its potential use in near-term quantum devices.
In the VQE algorithm, parameterized quantum circuits (PQCs) are employed to prepare quantum states, which are then utilized to compute the expectation value of a given Hamiltonian.
In this study, we introduce problem-specific PQCs tailored for optimization problems by dynamically generating PQCs that incorporate problem constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Variational Quantum Eigensolver (VQE) algorithm is gaining interest for
its potential use in near-term quantum devices. In the VQE algorithm,
parameterized quantum circuits (PQCs) are employed to prepare quantum states,
which are then utilized to compute the expectation value of a given
Hamiltonian. Designing efficient PQCs is crucial for improving convergence
speed. In this study, we introduce problem-specific PQCs tailored for
optimization problems by dynamically generating PQCs that incorporate problem
constraints. This approach reduces a search space by focusing on unitary
transformations that benefit the VQE algorithm, and accelerate convergence. Our
experimental results demonstrate that the convergence speed of our proposed
PQCs outperforms state-of-the-art PQCs, highlighting the potential of
problem-specific PQCs in optimization problems.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems [6.407238428292173]
We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained optimization problems (COPs)
pVSQA combines the variational methods and the post-processing technique.
We implement pVSQA on a quantum annealer and a gate-type quantum device.
arXiv Detail & Related papers (2023-09-15T03:09:16Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction [77.97248520278123]
We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
arXiv Detail & Related papers (2022-09-26T06:51:20Z) - On quantum factoring using noisy intermediate scale quantum computers [0.0]
We show better chance of finding the ground state when using VQE rather than QAOA for optimization.
In gradient-based optimization we find that the time required for quantum circuit gradient estimation is a significant problem.
arXiv Detail & Related papers (2022-08-15T09:32:07Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.