論文の概要: Neural Ordinary Differential Equations on Manifolds
- arxiv url: http://arxiv.org/abs/2006.06663v1
- Date: Thu, 11 Jun 2020 17:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 12:40:43.150017
- Title: Neural Ordinary Differential Equations on Manifolds
- Title(参考訳): 多様体上の神経常微分方程式
- Authors: Luca Falorsi and Patrick Forr\'e
- Abstract要約: 近年、ニューラルODEに基づくユークリッド空間の正規化フローは大きな可能性を秘めているが、同じ制限を被っている。
ベクトル場がこれらの空間上の可逆写像の柔軟なクラスをパラメータ化するための一般的なフレームワークを提供する方法を示す。
- 参考スコア(独自算出の注目度): 0.342658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows are a powerful technique for obtaining reparameterizable
samples from complex multimodal distributions. Unfortunately current approaches
fall short when the underlying space has a non trivial topology, and are only
available for the most basic geometries. Recently normalizing flows in
Euclidean space based on Neural ODEs show great promise, yet suffer the same
limitations. Using ideas from differential geometry and geometric control
theory, we describe how neural ODEs can be extended to smooth manifolds. We
show how vector fields provide a general framework for parameterizing a
flexible class of invertible mapping on these spaces and we illustrate how
gradient based learning can be performed. As a result we define a general
methodology for building normalizing flows on manifolds.
- Abstract(参考訳): 正規化フローは、複雑なマルチモーダル分布から再パラメータ化可能なサンプルを得るための強力な技術である。
残念ながら、現在のアプローチは、基礎空間が非自明な位相を持ち、最も基本的な測地に対してのみ利用可能であるときに不足する。
近年、ニューラルODEに基づくユークリッド空間の正規化フローは大きな可能性を秘めているが、同じ制限を被っている。
微分幾何学と幾何学的制御理論のアイデアを用いて、ニューラルオデムを滑らかな多様体に拡張する方法を説明する。
ベクトル場がこれらの空間上の可逆写像のフレキシブルクラスをパラメータ化するための一般的なフレームワークを提供する方法を示し、勾配に基づく学習をどのように行うかを示す。
その結果、多様体上の正規化フローを構築するための一般的な方法論を定義する。
関連論文リスト
- Topological Obstructions and How to Avoid Them [22.45861345237023]
局所最適性は特異点や不正確な次数や巻数によって生じる可能性があることを示す。
本稿では,データポイントを幾何学空間上のマルチモーダル分布にマッピングするフローベースモデルを提案する。
論文 参考訳(メタデータ) (2023-12-12T18:56:14Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Flow Matching on General Geometries [43.252817099263744]
本稿では,多様体上の連続正規化フローをトレーニングするための,単純かつ強力なフレームワークを提案する。
単純な測地ではシミュレーションが不要であり、発散を必要としないことを示し、その対象ベクトル場を閉形式で計算する。
本手法は,多くの実世界の非ユークリッドデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T18:21:24Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Semi-Riemannian Graph Convolutional Networks [36.09315878397234]
まず、定数非零曲率の半リーマン多様体のデータをモデル化する原理付きセミリーマンGCNを開発する。
本手法は,階層型グラフのような混合ヘテロジニアストポロジーをサイクルでモデル化するのに十分柔軟である幾何学的帰納バイアスを与える。
論文 参考訳(メタデータ) (2021-06-06T14:23:34Z) - Continuous normalizing flows on manifolds [0.342658286826597]
本稿では,最近導入されたニューラルODEと連続正規化フローを任意の滑らかな多様体に拡張する方法について述べる。
本稿では,これらの空間上のベクトル場をパラメータ化するための一般的な手法を提案する。
論文 参考訳(メタデータ) (2021-03-14T15:35:19Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Neural Manifold Ordinary Differential Equations [46.25832801867149]
マニフォールド連続正規化フロー(MCNF)の構築を可能にするニューラルマニフォールド正規微分方程式を導入する。
MCNFは変数の連続的な変化を伴う局所幾何学と計算確率のみを必要とする。
連続多様体力学の活用は、密度推定と下流タスクの両方において顕著な改善をもたらす。
論文 参考訳(メタデータ) (2020-06-18T03:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。