論文の概要: Uncertainty quantification for nonconvex tensor completion: Confidence
intervals, heteroscedasticity and optimality
- arxiv url: http://arxiv.org/abs/2006.08580v1
- Date: Mon, 15 Jun 2020 17:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 04:18:34.691488
- Title: Uncertainty quantification for nonconvex tensor completion: Confidence
intervals, heteroscedasticity and optimality
- Title(参考訳): 非凸テンソル完備化の不確かさの定量化:信頼区間、ヘテロセダサスティック性および最適性
- Authors: Changxiao Cai, H. Vincent Poor, Yuxin Chen
- Abstract要約: 本研究では,不完全かつ破損した観測によって与えられる低ランクテンソルを推定する問題について検討する。
改善不可能なレートをell-2$の精度で達成できることが分かりました。
- 参考スコア(独自算出の注目度): 92.35257908210316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the distribution and uncertainty of nonconvex optimization for noisy
tensor completion -- the problem of estimating a low-rank tensor given
incomplete and corrupted observations of its entries. Focusing on a two-stage
estimation algorithm proposed by Cai et al. (2019), we characterize the
distribution of this nonconvex estimator down to fine scales. This
distributional theory in turn allows one to construct valid and short
confidence intervals for both the unseen tensor entries and the unknown tensor
factors. The proposed inferential procedure enjoys several important features:
(1) it is fully adaptive to noise heteroscedasticity, and (2) it is data-driven
and automatically adapts to unknown noise distributions. Furthermore, our
findings unveil the statistical optimality of nonconvex tensor completion: it
attains un-improvable $\ell_{2}$ accuracy -- including both the rates and the
pre-constants -- when estimating both the unknown tensor and the underlying
tensor factors.
- Abstract(参考訳): 雑音のあるテンソル完備化のための非凸最適化の分布と不確実性について検討する。
Cai et al. (2019) によって提案された2段階推定アルゴリズムに着目し、この非凸推定器の分布を微細なスケールまで特徴づける。
この分布論により、未知のテンソル要素と未知のテンソル要素の両方に対して有効かつ短い信頼区間を構築することができる。
提案手法は,(1)ノイズの不均一性に完全に適応し,(2)データ駆動型であり,未知の雑音分布に自動的に適応する,という,いくつかの重要な特徴を享受する。
さらに,非凸テンソル補完の統計的最適性も明らかにしている: 未知テンソルと基礎となるテンソル係数の両方を推定する場合,速度と前コンテンソルの両方を含む改良不可能な$\ell_{2}$ の精度が得られる。
関連論文リスト
- Uncertainty-Aware Relational Graph Neural Network for Few-Shot Knowledge Graph Completion [12.887073684904147]
FKGC (Few-shot Knowledge Graph completion) は、少数の参照エンティティ対を考えると、関係の見えない事実を問うことを目的としている。
既存のFKGCの作業はそのような不確実性を無視しており、ノイズのある限られた参照サンプルの影響を受けやすい。
制約データをよりよく理解するために、不確実性をモデル化するための新しい不確実性対応数ショットKG補完フレームワーク(UFKGC)を提案する。
論文 参考訳(メタデータ) (2024-03-07T14:23:25Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
構造密度の重み付き雑音によるクリップ最適化問題を考察する。
勾配が有限の順序モーメントを持つとき、$mathcalO(K-(alpha - 1)/alpha)$よりも高速な収束率が得られることを示す。
得られた推定値が無視可能なバイアスと制御可能な分散を持つことを示す。
論文 参考訳(メタデータ) (2023-11-07T17:39:17Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
我々は, テンソル全体の精度保証を行う。
結果は数値実験により検証され、高次テンソルに対するクロス近似の有用性に重要な意味を持つ可能性がある。
論文 参考訳(メタデータ) (2022-07-09T19:33:59Z) - Noisy Tensor Completion via Low-rank Tensor Ring [41.86521269183527]
テンソル完了は不完全なデータ解析の基本的なツールであり、その目標は部分的な観測から欠落するエントリを予測することである。
既存の手法は、観測されたエントリがノイズフリーであるという明示的あるいは暗黙的な仮定をしばしば示し、欠落したエントリの正確な回復を理論的に保証する。
本稿では,高次・高次観測の劣化処理における既存の作業の非効率性を補完する新しいノイズテンソル補完モデルを提案する。
論文 参考訳(メタデータ) (2022-03-14T14:09:43Z) - Robust M-estimation-based Tensor Ring Completion: a Half-quadratic
Minimization Approach [14.048989759890475]
我々はM推定器を誤差統計量として用いるテンソル環完備化への頑健なアプローチを開発する。
truncatedの特異値分解と行列分解に基づくHQに基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-19T04:37:50Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z) - Inference for Low-rank Tensors -- No Need to Debias [22.163281794187544]
本稿では,低ランクテンソルモデルの統計的推論について考察する。
階数 1 の PCA モデルに対して、個々の特異テンソル上での推論の理論を確立する。
最後に、理論的な発見を裏付けるシミュレーションが提示される。
論文 参考訳(メタデータ) (2020-12-29T16:48:02Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。