論文の概要: Spatio-Temporal Tensor Sketching via Adaptive Sampling
- arxiv url: http://arxiv.org/abs/2006.11943v1
- Date: Sun, 21 Jun 2020 23:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 11:48:35.055635
- Title: Spatio-Temporal Tensor Sketching via Adaptive Sampling
- Title(参考訳): 適応サンプリングによる時空間テンソルスケッチ
- Authors: Jing Ma, Qiuchen Zhang, Joyce C. Ho, Li Xiong
- Abstract要約: 適応型サンプリングを用いてテンソルスライスを時間的ストリーミング形式で圧縮する新しいテンソル分解フレームワークであるSkeTenSmoothを提案する。
ニューヨーク市のYellow Taxiデータによる実験によると、SkeTenSmoothはメモリコストとランダムサンプリング率を大幅に削減する。
- 参考スコア(独自算出の注目度): 15.576219771198389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mining massive spatio-temporal data can help a variety of real-world
applications such as city capacity planning, event management, and social
network analysis. The tensor representation can be used to capture the
correlation between space and time and simultaneously exploit the latent
structure of the spatial and temporal patterns in an unsupervised fashion.
However, the increasing volume of spatio-temporal data has made it
prohibitively expensive to store and analyze using tensor factorization.
In this paper, we propose SkeTenSmooth, a novel tensor factorization
framework that uses adaptive sampling to compress the tensor in a temporally
streaming fashion and preserves the underlying global structure. SkeTenSmooth
adaptively samples incoming tensor slices according to the detected data
dynamics. Thus, the sketches are more representative and informative of the
tensor dynamic patterns. In addition, we propose a robust tensor factorization
method that can deal with the sketched tensor and recover the original
patterns. Experiments on the New York City Yellow Taxi data show that
SkeTenSmooth greatly reduces the memory cost and outperforms random sampling
and fixed rate sampling method in terms of retaining the underlying patterns.
- Abstract(参考訳): 大規模な時空間データのマイニングは、都市容量計画、イベント管理、ソーシャルネットワーク分析など、さまざまな現実世界のアプリケーションに役立つ。
テンソル表現は空間と時間の間の相関を捉え、教師なしの方法で空間パターンと時間パターンの潜在構造を同時に利用するために用いられる。
しかし、時空間データの量の増加により、テンソル因子分解を用いた保存と分析は避けられないほど高価になっている。
本稿では,適応サンプリングを用いてテンソルを時間的ストリーミングで圧縮し,その基盤となるグローバル構造を保存する,新しいテンソル分解フレームワークであるSkeTenSmoothを提案する。
SkeTenSmoothは検出されたデータダイナミクスに従って、入力テンソルスライスを適応的にサンプリングする。
したがって、スケッチはテンソルの動的パターンをより代表的で情報的である。
さらに,スケッチされたテンソルを処理し,元のパターンを復元するロバストなテンソル分解法を提案する。
ニューヨーク市のYellow Taxiデータを用いた実験では、SkeTenSmoothはメモリコストを大幅に削減し、基礎となるパターンを保持するという点でランダムサンプリングと固定レートサンプリングの手法より優れていた。
関連論文リスト
- ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
低ランクテンソル関数表現(LRTFR)は、無限解像度でメッシュグリッドを超えてデータを連続的に表現することができる。
テンソル関数に対する2つの基本的な概念、すなわちテンソル関数ランクとローランクテンソル関数分解を開発する。
提案手法は,最先端手法と比較して,提案手法の優越性と汎用性を裏付けるものである。
論文 参考訳(メタデータ) (2022-12-01T04:00:38Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - Nonparametric Factor Trajectory Learning for Dynamic Tensor
Decomposition [20.55025648415664]
動的テンソル分解(NONFAT)のためのNON FActor Trajectory Learningを提案する。
我々は第2レベルのGPを用いてエントリ値をサンプリングし、エンティティ間の時間的関係をキャプチャする。
実世界のいくつかの応用において,本手法の利点を示した。
論文 参考訳(メタデータ) (2022-07-06T05:33:00Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Temporally-Consistent Surface Reconstruction using Metrically-Consistent
Atlases [131.50372468579067]
そこで本稿では,時間変化点雲列から時間一貫性のある面列を復元する手法を提案する。
我々は、再構成された表面をニューラルネットワークによって計算されたアトラスとして表現し、フレーム間の対応性を確立することができる。
当社のアプローチは、いくつかの挑戦的なデータセットにおいて、最先端のものよりも優れています。
論文 参考訳(メタデータ) (2021-11-12T17:48:25Z) - Multi-version Tensor Completion for Time-delayed Spatio-temporal Data [50.762087239885936]
実世界の時間データは、様々なデータ読み込み遅延のために不完全または不正確な場合が多い。
経時的に更新を予測するための低ランクテンソルモデルを提案する。
最良基準法に比べて最大27.2%低いルート平均二乗誤差が得られる。
論文 参考訳(メタデータ) (2021-05-11T19:55:56Z) - Time-Aware Tensor Decomposition for Missing Entry Prediction [14.61218681943499]
不足エントリを持つ時間進化テンソルを考えると、不足エントリを正確に予測するために効果的に分解できるだろうか?
実世界のテンソルの新しいテンソル分解法であるTATD(Time-Aware Decomposition)を提案する。
TATDは時間テンソルを分解するための最先端の精度を提供する。
論文 参考訳(メタデータ) (2020-12-16T10:52:34Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
テンソル完備化のために,低ランクかつスパースに拡張されたタッカー分解モデルを導入する。
我々のモデルはスパースコアテンソルを促進するためにスパース正規化項を持ち、テンソルデータ圧縮に有用である。
テンソルに出現する潜在的な周期性と固有相関特性を利用するので,本モデルでは様々な種類の実世界のデータセットを扱うことが可能である。
論文 参考訳(メタデータ) (2020-10-01T12:45:39Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Sparse and Low-Rank High-Order Tensor Regression via Parallel Proximal
Method [6.381138694845438]
高次構造を持つ大規模データに対するスパース・ローランク回帰モデルを提案する。
我々のモデルはテンソル係数の空間性と低ランク性を強制する。
我々のモデルの予測は、ビデオデータセットに意味のある解釈を示す。
論文 参考訳(メタデータ) (2019-11-29T06:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。