論文の概要: Sparse Symplectically Integrated Neural Networks
- arxiv url: http://arxiv.org/abs/2006.12972v2
- Date: Wed, 28 Oct 2020 05:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 05:26:09.746505
- Title: Sparse Symplectically Integrated Neural Networks
- Title(参考訳): スパースシンプレクティック集積型ニューラルネットワーク
- Authors: Daniel M. DiPietro, Shiying Xiong and Bo Zhu
- Abstract要約: SSINN(Sprselectically Integrated Neural Networks)を紹介する。
SSINNはデータからハミルトン力学系を学ぶための新しいモデルである。
古典的ハミルトン力学問題に対するSSINNの評価を行う。
- 参考スコア(独自算出の注目度): 15.191984347149667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Sparse Symplectically Integrated Neural Networks (SSINNs), a
novel model for learning Hamiltonian dynamical systems from data. SSINNs
combine fourth-order symplectic integration with a learned parameterization of
the Hamiltonian obtained using sparse regression through a mathematically
elegant function space. This allows for interpretable models that incorporate
symplectic inductive biases and have low memory requirements. We evaluate
SSINNs on four classical Hamiltonian dynamical problems: the H\'enon-Heiles
system, nonlinearly coupled oscillators, a multi-particle mass-spring system,
and a pendulum system. Our results demonstrate promise in both system
prediction and conservation of energy, often outperforming the current
state-of-the-art black-box prediction techniques by an order of magnitude.
Further, SSINNs successfully converge to true governing equations from highly
limited and noisy data, demonstrating potential applicability in the discovery
of new physical governing equations.
- Abstract(参考訳): データからハミルトン力学系を学習するための新しいモデルであるSparse Symplectically Integrated Neural Networks (SSINNs)を紹介する。
SSINNは4階シンプレクティック積分と、数学的にエレガントな関数空間を通してスパース回帰を用いて得られたハミルトンの学習パラメータ化を結合する。
これによりシンプレクティックな帰納的バイアスを取り入れ、メモリ要件の少ない解釈可能なモデルが可能になる。
我々は,H\'enon-Heiles系,非線形結合振動子,多粒子質量ばね系,振り子系という4つの古典的ハミルトン力学問題に対するSSINNの評価を行った。
本研究では,システム予測とエネルギー保存の両方において,現在のブラックボックス予測手法を桁違いに上回る有望性を示す。
さらに、SSINNは、非常に制限されたノイズの多いデータから真の支配方程式に収束し、新しい物理支配方程式の発見に潜在的に適用可能であることを示す。
関連論文リスト
- Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
ハミルトン系は、保守的であり、すなわちエネルギーは進化を通して保存されるという重要な性質を持っている。
特にハミルトニアンニューラルネットワークは、構造的帰納バイアスをNNモデルに組み込むメカニズムとして登場した。
共振器のスキームはノイズに対して頑健であり,ノイズ観測から状態変数がサンプリングされた場合のハミルトニアン系の近似が良好であることを示す。
論文 参考訳(メタデータ) (2024-09-17T12:45:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Hamiltonian Neural Networks with Automatic Symmetry Detection [0.0]
ハミルトニアンニューラルネットワーク(HNN)は、以前の物理知識を組み込むために導入された。
我々は、ニューラルネットワークに対称性を検出し、埋め込むために、Lie代数フレームワークを用いてHNNを強化した。
論文 参考訳(メタデータ) (2023-01-19T07:34:57Z) - Symplectically Integrated Symbolic Regression of Hamiltonian Dynamical
Systems [11.39873640706974]
シンプレクティック統合シンボリック回帰(SISR)は、データから物理支配方程式を学ぶための新しいテクニックである。
SISRは多層LSTM-RNNを用いて、確率的にハミルトン記号表現をサンプリングする。
論文 参考訳(メタデータ) (2022-09-04T03:17:40Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。