論文の概要: Learning Generalized Hamiltonians using fully Symplectic Mappings
- arxiv url: http://arxiv.org/abs/2409.11138v1
- Date: Tue, 17 Sep 2024 12:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 16:45:13.816059
- Title: Learning Generalized Hamiltonians using fully Symplectic Mappings
- Title(参考訳): 完備シンプレクティックマッピングを用いた一般化ハミルトニアンの学習
- Authors: Harsh Choudhary, Chandan Gupta, Vyacheslav kungrutsev, Melvin Leok, Georgios Korpas,
- Abstract要約: ハミルトン系は、保守的であり、すなわちエネルギーは進化を通して保存されるという重要な性質を持っている。
特にハミルトニアンニューラルネットワークは、構造的帰納バイアスをNNモデルに組み込むメカニズムとして登場した。
共振器のスキームはノイズに対して頑健であり,ノイズ観測から状態変数がサンプリングされた場合のハミルトニアン系の近似が良好であることを示す。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many important physical systems can be described as the evolution of a Hamiltonian system, which has the important property of being conservative, that is, energy is conserved throughout the evolution. Physics Informed Neural Networks and in particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model. By ensuring physical invariances are conserved, the models exhibit significantly better sample complexity and out-of-distribution accuracy than standard NNs. Learning the Hamiltonian as a function of its canonical variables, typically position and velocity, from sample observations of the system thus becomes a critical task in system identification and long-term prediction of system behavior. However, to truly preserve the long-run physical conservation properties of Hamiltonian systems, one must use symplectic integrators for a forward pass of the system's simulation. While symplectic schemes have been used in the literature, they are thus far limited to situations when they reduce to explicit algorithms, which include the case of separable Hamiltonians or augmented non-separable Hamiltonians. We extend it to generalized non-separable Hamiltonians, and noting the self-adjoint property of symplectic integrators, we bypass computationally intensive backpropagation through an ODE solver. We show that the method is robust to noise and provides a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation. In the numerical results, we show the performance of the method concerning Hamiltonian reconstruction and conservation, indicating its particular advantage for non-separable systems.
- Abstract(参考訳): 多くの重要な物理系はハミルトニアン系の進化と説明できるが、これは保守的であり、エネルギーは進化を通して保存されるという重要な性質を持つ。
物理情報ニューラルネットワーク、特にハミルトンニューラルネットワークは、構造的帰納バイアスをNNモデルに組み込むメカニズムとして登場した。
物理的不変性が確保されることで、標準NNよりもサンプルの複雑さと分布外精度が大幅に向上する。
ハミルトニアンをその標準変数(典型的には位置と速度)の関数として、システムのサンプル観測から学習し、システム同定とシステムの挙動の長期予測において重要なタスクとなる。
しかし、ハミルトン系の長期保存特性を真に保存するためには、シンプレクティック積分器をシステムのシミュレーションの前方通過に用いる必要がある。
シンプレクティックスキームは文献で使われてきたが、これらのスキームは、分離可能なハミルトニアンや拡張可能な非分離性ハミルトニアンなど、明示的なアルゴリズムに還元される状況に限られている。
一般化された非分離ハミルトニアンに拡張し、シンプレクティック積分器の自己随伴性に言及し、計算的に集約的なバックプロパゲーションをODEソルバでバイパスする。
本手法は雑音に対して頑健であり,ノイズ観測から状態変数がサンプリングされた場合のハミルトニアン系の近似が良好であることを示す。
数値計算の結果,ハミルトンの復元と保全に関する手法の性能を示すとともに,非分離系に対して特に有利であることを示す。
関連論文リスト
- Hamiltonian Matching for Symplectic Neural Integrators [9.786274281068815]
ハミルトンの運動方程式は、天文学、量子力学、粒子物理学、気候科学など、物理学の様々な分野における基本的な枠組みを形成している。古典的な数値解法は通常、これらの系の時間発展を計算するために用いられる。
パラメトリック時間依存ハミルトニアン関数の正確なフローマップの列を構成するニューラルネットワークに基づく新しいシンプレクティックインテグレータであるSympFlowを提案する。
論文 参考訳(メタデータ) (2024-10-23T20:21:56Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
そこで,WSINDy は大規模内在系の存在下でハミルトン系を小さくすることに成功した。
WSINDy は、ハミルトンベクトル場の試行基底に制限を加えることにより、ハミルトン構造を自然に保存する。
また、ベクトル場のレベルでの1次平均化は、ほぼ周期的なハミルトン系におけるハミルトン構造を保存することを証明して平均化理論に寄与する。
論文 参考訳(メタデータ) (2023-10-09T17:20:04Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Learning Hamiltonians of constrained mechanical systems [0.0]
ハミルトン系は古典力学においてエレガントでコンパクトな形式主義である。
拘束された機械系のハミルトン関数の正確な近似に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-31T14:03:17Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Stoquasticity in circuit QED [78.980148137396]
スケーラブルな符号-確率自由経路積分モンテカルロシミュレーションは一般にそのようなシステムに対して可能であることを示す。
我々は、実効的、非確率的クビットハミルトニアンが容量結合された束量子ビットの系に現れるという最近の発見を裏付ける。
論文 参考訳(メタデータ) (2020-11-02T16:41:28Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
我々は、新しいニューラルネットワークアーキテクチャ、非分離型シンプレクティックニューラルネットワーク(NSSNN)を提案する。
NSSNNは、限られた観測データから非分離ハミルトン系のシンプレクティック構造を発見し、埋め込む。
大規模ハミルトニアン系に対する長期的、正確で、堅牢な予測を得るためのアプローチの独特な計算上の利点を示す。
論文 参考訳(メタデータ) (2020-10-23T19:50:13Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
SSINN(Sprselectically Integrated Neural Networks)を紹介する。
SSINNはデータからハミルトン力学系を学ぶための新しいモデルである。
古典的ハミルトン力学問題に対するSSINNの評価を行う。
論文 参考訳(メタデータ) (2020-06-10T03:33:37Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
本稿では,離散化を体系的に実現する幾何学的枠組みを提案する。
我々は、シンプレクティックな非保守的、特に散逸的なハミルトン系への一般化が、制御された誤差まで収束率を維持することができることを示す。
論文 参考訳(メタデータ) (2020-04-15T00:36:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。