論文の概要: Ultrahyperbolic Representation Learning
- arxiv url: http://arxiv.org/abs/2007.00211v5
- Date: Mon, 11 Jan 2021 02:49:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 22:00:14.787949
- Title: Ultrahyperbolic Representation Learning
- Title(参考訳): 超双曲表現学習
- Authors: Marc T. Law and Jos Stam
- Abstract要約: 機械学習では、データは通常、点間の距離が直線に沿っているユークリッド空間で表現される。
定数非零曲率の擬リーマン多様体上に存在する表現を提案する。
この幾何学において必要な学習ツールを提供し、勾配に基づく最適化手法を拡張した。
- 参考スコア(独自算出の注目度): 13.828165530602224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning, data is usually represented in a (flat) Euclidean space
where distances between points are along straight lines. Researchers have
recently considered more exotic (non-Euclidean) Riemannian manifolds such as
hyperbolic space which is well suited for tree-like data. In this paper, we
propose a representation living on a pseudo-Riemannian manifold of constant
nonzero curvature. It is a generalization of hyperbolic and spherical
geometries where the nondegenerate metric tensor need not be positive definite.
We provide the necessary learning tools in this geometry and extend
gradient-based optimization techniques. More specifically, we provide
closed-form expressions for distances via geodesics and define a descent
direction to minimize some objective function. Our novel framework is applied
to graph representations.
- Abstract(参考訳): 機械学習では、データは通常、点間の距離が直線に沿ってある(平坦な)ユークリッド空間で表現される。
研究者は最近、木のようなデータに適した双曲空間のようなよりエキゾチックな(ユークリッドでない)リーマン多様体を考える。
本稿では、定数非零曲率の擬リーマン多様体上に存在する表現を提案する。
これは双曲幾何学と球面幾何学の一般化であり、非退化計量テンソルは正定値でない。
この幾何学において必要な学習ツールを提供し,勾配に基づく最適化手法を拡張する。
より具体的には、測地学を通して距離の閉形式表現を提供し、目的関数を最小化する降下方向を定義する。
我々の新しいフレームワークはグラフ表現に適用できる。
関連論文リスト
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
高品質なグラフ埋め込みを学習するための新しいコントラスト学習フレームワークを提案する。
具体的には、階層的なデータ不変情報を効果的にキャプチャするアライメントメトリックを設計する。
双曲空間において、木の性質に関連する葉と高さの均一性に対処する必要があることを示す。
論文 参考訳(メタデータ) (2023-10-27T15:31:42Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
本研究では,測地線長を最小化するための既存の手法をまず解析する。
次に,連続多様体上の距離場と測地流のモデルに基づくパラメータ化を提案する。
第3に,Ricciスカラーのより大きい値を示す多様体の領域において,曲率に基づくトレーニング機構,サンプリングおよびスケーリングポイントを開発する。
論文 参考訳(メタデータ) (2023-05-24T15:09:41Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
非ユークリッド計量空間へのグラフ埋め込みは、既存の有界よりもはるかに少ない訓練データを持つユークリッド空間におけるグラフ埋め込みよりも優れていることを示す。
我々の新しい上限は、既存の上限よりもかなり強く速く、最大で$R$と$O(frac1S)$に指数関数できる。
論文 参考訳(メタデータ) (2023-05-13T17:29:18Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
グラフ埋め込みは、広範囲のGraph MLアプリケーションで使用されている。
そのような埋め込みの質は、空間の幾何学がグラフの幾何学と一致するかどうかに決定的に依存する。
論文 参考訳(メタデータ) (2022-02-02T18:18:35Z) - Semi-Riemannian Graph Convolutional Networks [36.09315878397234]
まず、定数非零曲率の半リーマン多様体のデータをモデル化する原理付きセミリーマンGCNを開発する。
本手法は,階層型グラフのような混合ヘテロジニアストポロジーをサイクルでモデル化するのに十分柔軟である幾何学的帰納バイアスを与える。
論文 参考訳(メタデータ) (2021-06-06T14:23:34Z) - Manifold learning with arbitrary norms [8.433233101044197]
本研究では,アースモーバー距離に基づく多様体学習が,分子形状空間を学習する標準的なユークリッド変種よりも優れていることを示す。
数値シミュレーションにより,アースモーバー距離に基づく多様体学習は,分子形状空間を学習するための標準ユークリッド変種よりも優れていることを示した。
論文 参考訳(メタデータ) (2020-12-28T10:24:30Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Differentiating through the Fr\'echet Mean [51.32291896926807]
フレット平均(Fr'echet mean)はユークリッド平均の一般化である。
任意のリーマン多様体に対して Fr'echet 平均を微分する方法を示す。
これにより、Fr'echet平均を双曲型ニューラルネットワークパイプラインに完全に統合する。
論文 参考訳(メタデータ) (2020-02-29T19:49:38Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
我々は、ある曲面リーマン空間におけるグラフ埋め込みを学習し、最適化する方法を示す。
我々の結果は、機械学習パイプラインにおける非ユークリッド埋め込みの利点の新たな証拠として役立ちます。
論文 参考訳(メタデータ) (2020-02-20T10:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。