論文の概要: Image Analysis Based on Nonnegative/Binary Matrix Factorization
- arxiv url: http://arxiv.org/abs/2007.00889v1
- Date: Thu, 2 Jul 2020 05:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 14:35:33.043465
- Title: Image Analysis Based on Nonnegative/Binary Matrix Factorization
- Title(参考訳): 非負行列分解に基づく画像解析
- Authors: Hinako Asaoka and Kazue Kudo
- Abstract要約: 非負・二項行列分解(NBMF)を用いることで、行列を非負行列と二項行列に分解することができる。
NBMFとFujitsu Digital Annealerを用いた顔画像の解析により,画像再構成と画像分類に成功している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using nonnegative/binary matrix factorization (NBMF), a matrix can be
decomposed into a nonnegative matrix and a binary matrix. Our analysis of
facial images, based on NBMF and using the Fujitsu Digital Annealer, leads to
successful image reconstruction and image classification. The NBMF algorithm
converges in fewer iterations than those required for the convergence of
nonnegative matrix factorization (NMF), although both techniques perform
comparably in image classification.
- Abstract(参考訳): 非負行列分解(NBMF)を用いることで、行列を非負行列と二項行列に分解することができる。
NBMFとFujitsu Digital Annealerを用いた顔画像の解析により,画像再構成と画像分類に成功している。
NBMFアルゴリズムは、非負行列分解(NMF)の収束に必要なものよりも少ないイテレーションで収束するが、どちらの手法も画像分類において比較可能である。
関連論文リスト
- Collaborative filtering based on nonnegative/binary matrix factorization [0.0]
データを疎結合とする協調フィルタリングに適用可能な改良型NBMFアルゴリズムを提案する。
修正手法では、評価行列の未定格要素をマスキングし、協調フィルタリング性能を向上させる。
論文 参考訳(メタデータ) (2024-10-14T11:10:15Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
本稿では,勾配降下による高次元学習を効果的に行うための理論解析と新しい手法の両立に寄与する。
MFAトレーニングと推論/サンプリングは,学習終了後の行列逆変換を必要としない精度行列に基づいて行うことができることを示す。
理論解析と行列の他に,SVHNやMNISTなどの画像データセットにMFAを適用し,サンプル生成と外乱検出を行う能力を示す。
論文 参考訳(メタデータ) (2023-08-26T06:12:33Z) - Rethinking Symmetric Matrix Factorization: A More General and Better
Clustering Perspective [5.174012156390378]
非負行列分解(NMF)は強い解釈性を持つクラスタリングに広く用いられている。
本稿では,非負でなくてもよい対称行列の分解について検討する。
本稿では,クラスタリング性能を高めるために,正規化項を持つ効率的な分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-06T14:32:11Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
行列分解 (MF) を一定の制約で考慮し, 様々な分野の応用を見いだす。
我々は,効率の良いメッセージパッシング実装であるUAMPMFを用いて,MFに対するベイズ的アプローチを開発する。
UAMPMFは、回復精度、ロバスト性、計算複雑性の観点から、最先端のアルゴリズムを著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-07-31T12:09:32Z) - Co-Separable Nonnegative Matrix Factorization [20.550794776914508]
非負行列分解(NMF)はパターン認識の分野で人気があるモデルである。
我々はこのNMFをCoS-NMF(CoS-NMF)と呼ぶ。
CoS-NMFの最適化モデルを提案し,その解法に置換高速勾配法を適用した。
論文 参考訳(メタデータ) (2021-09-02T07:05:04Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Nonnegative Matrix Factorization with Toeplitz Penalty [0.0]
NMF(Nonnegative Matrix Factorization)は、データマトリックスの線形、部分ベースの近似を生成する教師なし学習アルゴリズムである。
非データ依存の補助制約を利用した新しいNMFアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-07T13:49:23Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
位相探索(PR)とアフィンランク最小化(ARM)アルゴリズムに基づいてPSDMFアルゴリズムを設計可能であることを示す。
このアイデアに触発され、反復的ハードしきい値(IHT)に基づくPSDMFアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2020-07-24T06:10:19Z) - Sparse Separable Nonnegative Matrix Factorization [22.679160149512377]
非負行列分解(NMF)の新しい変種を提案する。
分離性は、第1NMF因子の列が入力行列の列に等しいのに対して、スパース性は第2NMF因子の列がスパースであることが要求される。
雑音のない環境では、軽微な仮定の下で、我々のアルゴリズムが真に根底にある情報源を復元することを証明する。
論文 参考訳(メタデータ) (2020-06-13T03:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。