論文の概要: Deep interpretability for GWAS
- arxiv url: http://arxiv.org/abs/2007.01516v1
- Date: Fri, 3 Jul 2020 06:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:02:30.256059
- Title: Deep interpretability for GWAS
- Title(参考訳): GWASの深い解釈可能性
- Authors: Deepak Sharma, Audrey Durand, Marc-Andr\'e Legault, Louis-Philippe
Lemieux Perreault, Audrey Lema\c{c}on, Marie-Pierre Dub\'e, Joelle Pineau
- Abstract要約: アソシエーションテストは変種ごとに行われる。
ディープネットワークはこれらの相互作用をモデル化するのに利用できるが、大規模な遺伝的データセットをトレーニングし解釈することは困難である。
本稿では,DeepLIFTという勾配に基づく深層解析技術を用いて,糖尿病の遺伝的リスク因子を,新たな関連性とともに深層モデルを用いて同定できることを示す。
- 参考スコア(独自算出の注目度): 29.299107158241856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Genome-Wide Association Studies are typically conducted using linear models
to find genetic variants associated with common diseases. In these studies,
association testing is done on a variant-by-variant basis, possibly missing out
on non-linear interaction effects between variants. Deep networks can be used
to model these interactions, but they are difficult to train and interpret on
large genetic datasets. We propose a method that uses the gradient based deep
interpretability technique named DeepLIFT to show that known diabetes genetic
risk factors can be identified using deep models along with possibly novel
associations.
- Abstract(参考訳): ゲノムワイド・アソシエーション研究は通常、一般的な疾患に関連する遺伝的変異を見つけるために線形モデルを用いて行われる。
これらの研究では、アソシエーションテストは変種ごとに行われ、おそらく変種間の非線形相互作用効果を欠いている。
ディープネットワークはこれらの相互作用のモデル化に使用できるが、大規模な遺伝的データセットのトレーニングや解釈は困難である。
本稿では,DeepLIFTという勾配に基づく深層解析技術を用いて,糖尿病の遺伝的リスク因子を,新たな関連性とともに深層モデルを用いて同定できることを示す。
関連論文リスト
- Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
複雑な疾患の遺伝的アーキテクチャを調べることは、遺伝的および環境要因の高度にポリジェニックでインタラクティブな景観のために困難である。
我々は、シミュレーションと実際のジェノタイプ/フェノタイプデータセットの両方を用いて、複雑な特性を予測するために、人工ニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
従来のニューラルネットワークと線形混合モデルの強度を相乗化するカーネルベースニューラルネットワークモデル(KNN)を開発した。
MINQUEに基づく遺伝子変異と表現型との結合性を評価する試験。
線形および非線形/非付加的遺伝子効果の評価と解釈のための2つの追加試験。
論文 参考訳(メタデータ) (2023-12-06T05:02:28Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - A Sparse Graph-Structured Lasso Mixed Model for Genetic Association with
Confounding Correction [28.364820868064893]
本稿では,特徴量からの関連性情報をデータセットに組み込んだグラフ構造化線形混合モデル(sGLMM)を提案する。
提案モデルは他の既存手法よりも優れており,人口構造と共有信号の両方から相関関係をモデル化できることを示す。
また、本モデルで発見されたヒトアルツハイマー病の因果遺伝子変異について検討し、最も重要な遺伝子座のいくつかを正当化する。
論文 参考訳(メタデータ) (2017-11-11T16:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。