論文の概要: Physics-Based Deep Neural Networks for Beam Dynamics in Charged Particle
Accelerators
- arxiv url: http://arxiv.org/abs/2007.03555v1
- Date: Tue, 7 Jul 2020 15:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:51:25.783184
- Title: Physics-Based Deep Neural Networks for Beam Dynamics in Charged Particle
Accelerators
- Title(参考訳): 荷電粒子加速器におけるビームダイナミクスのための物理ベースディープニューラルネットワーク
- Authors: Andrei Ivanov, Ilya Agapov
- Abstract要約: 力学の表現で生じるテイラー写像は、ニューラルネットワークの重みにマッピングされる。
得られたネットワークは、トレーニング前に完全な精度で力学系を近似する。
本稿では,既存のPETRA IIIと,DESYにおけるPETRA IVストレージリングの例を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach for constructing neural networks which
model charged particle beam dynamics. In our approach, the Taylor maps arising
in the representation of dynamics are mapped onto the weights of a polynomial
neural network. The resulting network approximates the dynamical system with
perfect accuracy prior to training and provides a possibility to tune the
network weights on additional experimental data. We propose a symplectic
regularization approach for such polynomial neural networks that always
restricts the trained model to Hamiltonian systems and significantly improves
the training procedure. The proposed networks can be used for beam dynamics
simulations or for fine-tuning of beam optics models with experimental data.
The structure of the network allows for the modeling of large accelerators with
a large number of magnets. We demonstrate our approach on the examples of the
existing PETRA III and the planned PETRA IV storage rings at DESY.
- Abstract(参考訳): 本稿では,荷電粒子線力学をモデル化したニューラルネットワーク構築手法を提案する。
このアプローチでは、ダイナミクスの表現で生じるテイラー写像は多項式ニューラルネットワークの重みにマッピングされる。
得られたネットワークは、トレーニング前に完全な精度で力学系を近似し、追加の実験データにネットワーク重みをチューニングする可能性を提供する。
このような多項式ニューラルネットワークに対するシンプレクティック正規化手法を提案し、トレーニングされたモデルをハミルトン系に常に制限し、トレーニング手順を大幅に改善する。
提案したネットワークは、ビーム力学シミュレーションや実験データを用いたビーム光学モデルの微調整に利用できる。
ネットワークの構造は、多数の磁石を持つ大型加速器のモデリングを可能にする。
本稿では,既存のPETRA IIIと,DESYにおけるPETRA IVストレージリングの例を紹介する。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Sobolev training of thermodynamic-informed neural networks for smoothed
elasto-plasticity models with level set hardening [0.0]
本研究では, 可視成分を用いた平滑な弾塑性モデルの学習を目的としたディープラーニングフレームワークを提案する。
収率関数を進化レベル集合として再キャストすることにより、ハミルトン・ヤコビ方程式の解を予測する機械学習手法を導入する。
論文 参考訳(メタデータ) (2020-10-15T22:43:32Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
本論文は, 単純な振り子と世界最大規模のX線源の双方について, 実測結果について述べる。
提案手法により, ノイズ, 制限, 部分的な観測から複雑な物理を復元することができることが実証された。
論文 参考訳(メタデータ) (2020-05-24T09:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。