論文の概要: Unsupervised Neural Networks for Quantum Eigenvalue Problems
- arxiv url: http://arxiv.org/abs/2010.05075v1
- Date: Sat, 10 Oct 2020 19:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 23:39:09.635406
- Title: Unsupervised Neural Networks for Quantum Eigenvalue Problems
- Title(参考訳): 量子固有値問題に対する教師なしニューラルネットワーク
- Authors: Henry Jin, Marios Mattheakis, Pavlos Protopapas
- Abstract要約: 差分固有値問題に対する固有関数と固有値を発見するための新しい教師なしニューラルネットワークを提案する。
スキャン機構が組み込まれており、任意の数の解を見つけることができる。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenvalue problems are critical to several fields of science and
engineering. We present a novel unsupervised neural network for discovering
eigenfunctions and eigenvalues for differential eigenvalue problems with
solutions that identically satisfy the boundary conditions. A scanning
mechanism is embedded allowing the method to find an arbitrary number of
solutions. The network optimization is data-free and depends solely on the
predictions. The unsupervised method is used to solve the quantum infinite well
and quantum oscillator eigenvalue problems.
- Abstract(参考訳): 固有値問題は科学と工学のいくつかの分野において重要である。
境界条件を同一に満たす解を用いた微分固有値問題に対する固有関数と固有値を発見するための新しい教師なしニューラルネットワークを提案する。
スキャン機構が組み込まれており、任意の数の解を見つけることができる。
ネットワーク最適化はデータフリーであり、予測のみに依存する。
教師なし法は、量子無限井戸と量子発振器固有値問題を解くために用いられる。
関連論文リスト
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
量子領域において、そのようなアプローチは、非可積分系に対するシュレーディンガー方程式を解く新しいアプローチへの道を開く。
実数および虚数周波数のシステムについて検討し、量子場理論に現れる問題に対処するための新しい数値法の基礎を築いた。
論文 参考訳(メタデータ) (2024-05-22T08:34:52Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Physics-Informed Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
固有値問題は、科学と工学のいくつかの分野において重要な問題である。
我々は、教師なしニューラルネットワークを用いて、微分固有値問題に対する固有関数と固有値を発見する。
ネットワーク最適化はデータフリーであり、ニューラルネットワークの予測にのみ依存する。
論文 参考訳(メタデータ) (2022-02-24T18:29:39Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - A theory of quantum subspace diagonalization [3.248953303528541]
量子部分空間対角化アルゴリズムは、大きなエルミート行列の最小固有値を正確に計算できることを示す。
我々の結果は、量子計算の文脈外の固有値問題を解くことに、独立した関心を持つことができる。
論文 参考訳(メタデータ) (2021-10-14T16:09:07Z) - Learning ground states of quantum Hamiltonians with graph networks [6.024776891570197]
多体シュロディンガー方程式の最低エネルギー固有状態を求めることは、基礎的な問題である。
変分法は、低次元の変分多様体内での最良の近似を求めることによってこの問題にアプローチする。
グラフニューラルネットワークを用いて、構造化された変分多様体を定義し、パラメータを最適化して高品質な近似を求める。
論文 参考訳(メタデータ) (2021-10-12T22:56:16Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
我々は、ディープネットワークのトレーニングに固有分解のないアプローチを導入する。
この手法は固有分解の明示的な微分よりもはるかに堅牢であることを示す。
我々の手法は収束特性が良く、最先端の結果が得られます。
論文 参考訳(メタデータ) (2020-04-15T04:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。