論文の概要: Gaussian Process Bandit Optimization of the Thermodynamic Variational
Objective
- arxiv url: http://arxiv.org/abs/2010.15750v3
- Date: Fri, 20 Nov 2020 22:32:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 23:29:59.719743
- Title: Gaussian Process Bandit Optimization of the Thermodynamic Variational
Objective
- Title(参考訳): 熱力学的変動物体のガウス過程帯域最適化
- Authors: Vu Nguyen, Vaden Masrani, Rob Brekelmans, Michael A. Osborne, Frank
Wood
- Abstract要約: 本稿では,ソートされた離散化点を自動選択するガウス過程帯域最適化手法を提案する。
我々は,帯域最適化が積分点の最小化選択に収束することを理論的に保証する。
本アルゴリズムの実証検証は,変分オートエンコーダとシグモイド・リーフ・ネットワークにおける学習と推論の改善の観点から行われる。
- 参考スコア(独自算出の注目度): 36.062939523856066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving the full promise of the Thermodynamic Variational Objective (TVO),
a recently proposed variational lower bound on the log evidence involving a
one-dimensional Riemann integral approximation, requires choosing a "schedule"
of sorted discretization points. This paper introduces a bespoke Gaussian
process bandit optimization method for automatically choosing these points. Our
approach not only automates their one-time selection, but also dynamically
adapts their positions over the course of optimization, leading to improved
model learning and inference. We provide theoretical guarantees that our bandit
optimization converges to the regret-minimizing choice of integration points.
Empirical validation of our algorithm is provided in terms of improved learning
and inference in Variational Autoencoders and Sigmoid Belief Networks.
- Abstract(参考訳): 最近提案された1次元リーマン積分近似を含むログ証拠の変分下界である熱力学変分対象(TVO)の完全公約を達成するには、ソートされた離散化点の「スケジュール」を選択する必要がある。
本稿では,これらの点を自動選択するガウス過程帯域最適化手法を提案する。
このアプローチは1回選択を自動化するだけでなく、最適化の過程で動的に位置を適応させ、モデル学習と推論を改善します。
我々は,帯域最適化が積分点の最小化選択に収束するという理論的保証を提供する。
このアルゴリズムの実証的検証は、変分オートエンコーダとsgmoid belief networkにおける学習と推論の改善の観点から提供される。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - An Adaptive Gradient Method with Energy and Momentum [0.0]
目的関数の勾配に基づく最適化のための新しいアルゴリズムを提案する。
この方法は実装が簡単で、計算効率が良く、大規模機械学習問題に適している。
論文 参考訳(メタデータ) (2022-03-23T04:48:38Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
適応最適化アルゴリズムは学習分野の鍵となる柱を表現していると考えられる。
本稿では,異なる非滑らかな目的問題に対する適応運動量法を提案する。
論文 参考訳(メタデータ) (2021-10-16T09:47:57Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
本稿では,不確実なプロセスのリアルタイム最適化において,プラントモデルミスマッチを克服するための修飾子適応方式について検討する。
提案したスキームは物理モデルを組み込んでおり、探査中のリスクを最小限に抑えるために信頼領域のアイデアに依存している。
取得関数の使用、プロセスノイズレベルを知る、または名目上のプロセスモデルを指定する利点を図示する。
論文 参考訳(メタデータ) (2020-09-18T12:57:17Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。