論文の概要: Toward the Fully Physics-Informed Echo State Network -- an ODE
Approximator Based on Recurrent Artificial Neurons
- arxiv url: http://arxiv.org/abs/2011.06769v1
- Date: Fri, 13 Nov 2020 05:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 00:48:12.486573
- Title: Toward the Fully Physics-Informed Echo State Network -- an ODE
Approximator Based on Recurrent Artificial Neurons
- Title(参考訳): 完全物理インフォームドエコー状態ネットワークを目指して -リカレント人工ニューロンに基づくODE近似器-
- Authors: Dong Keun Oh
- Abstract要約: 物理インフォームド・エコー状態ネットワーク(ESN)は、物理インフォームド・モデルを完全にトレーニングしようとする試みについて、最近の理論的議論から着想を得たものである。
ODE近似器は、繰り返し評価に関して、解を逐次複製するように設計されている。
実際のトレーニングプロセスは、回帰のための2パス戦略のアイデアに基づいて確立される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inspired by recent theoretical arguments, physics-informed echo state network
(ESN) is discussed on the attempt to train a reservoir model absolutely in
physics-informed manner. As the plainest work on such a purpose, an ODE
(ordinary differential equation) approximator is designed to replicate the
solution in sequence with respect to the recurrent evaluations. On the
principal invariance of differential equations, the constraint in recurrence
just takes shape to secure a proper regression method for the ESN-based ODE
approximator. After then, the actual training process is established on the
idea of two-pass strategy for regression. Aiming at the fully physics-informed
reservoir model, a couple of nonlinear dynamical problems are demonstrated as
the computations obtained from the proposed method in this study.
- Abstract(参考訳): 近年の理論的議論に触発されて, 物理不定形エコー状態ネットワーク (esn) は, 物理不定形な方法で貯留層モデルを完全に訓練する試みとして議論されている。
このような目的に関する最も単純な研究として、ode(ordinary differential equation)近似器は、反復的な評価に関して解を逐次再現するように設計されている。
微分方程式の主不変性について、繰り返しの制約は形を取り、ESNベースのODE近似器の適切な回帰法を確保する。
その後、回帰のための2パス戦略の考え方に基づいて実際のトレーニングプロセスを確立する。
本研究では, 完全物理インフォームド貯水池モデルを用いて, 提案手法の計算結果として, 非線形動的問題をいくつか示す。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses [16.89505645696765]
物理インフォームドニューラルネットワークを用いて、欠室インパルス応答の初期部分を線形配列で再構成する。
提案モデルは,最先端の深層学習および圧縮センシング技術に関して,高精度な再構築と性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T13:01:00Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
ニューラルネットワーク近似を用いて、未知の常微分方程式を既知のODEで近似する方法を示す。
その結果、このRBSEによるNNパラメータのトレーニングは、バックプロパゲーションによるニューラルネットワークのトレーニングよりも優れた結果(測定/状態推定精度)が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-12T15:38:13Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。