論文の概要: Towards an Adaptive Dynamic Mode Decomposition
- arxiv url: http://arxiv.org/abs/2012.07834v1
- Date: Fri, 11 Dec 2020 22:50:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 02:46:25.496554
- Title: Towards an Adaptive Dynamic Mode Decomposition
- Title(参考訳): 適応動的モード分解に向けて
- Authors: Mohammad N. Murshed, M. Monir Uddin
- Abstract要約: Dynamic Mode Decomposition (DMD) は、ある時点の数量を将来同じ数量にマッピングする行列を識別するデータベースのモデリングツールである。
我々は、時間遅延座標、投影法、フィルタをデータの性質に応じて利用し、利用可能な問題のモデルを作成するAdaptive Dynamic Mode Decomposition (ADMD) と呼ばれる新しいバージョンを設計する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Mode Decomposition (DMD) is a data based modeling tool that
identifies a matrix to map a quantity at some time instant to the same quantity
in future. We design a new version which we call Adaptive Dynamic Mode
Decomposition (ADMD) that utilizes time delay coordinates, projection methods
and filters as per the nature of the data to create a model for the available
problem. Filters are very effective in reducing the rank of high-dimensional
dataset. We have incorporated 'discrete Fourier transform' and 'augmented
lagrangian multiplier' as filters in our method. The proposed ADMD is tested on
several datasets of varying complexities and its performance appears to be
promising.
- Abstract(参考訳): dynamic mode decomposition (dmd) はデータベースのモデリングツールで、ある時点での量を将来同じ量にマッピングするためにマトリックスを識別する。
我々は、時間遅延座標、投影法、フィルタをデータの性質に応じて利用し、利用可能な問題のモデルを作成するAdaptive Dynamic Mode Decomposition (ADMD) と呼ばれる新しいバージョンを設計する。
フィルタは高次元データセットのランクを下げるのに非常に効果的である。
我々は,フィルタとして'discrete Fourier transform' と 'augmented lagrangian multiplier' を組み込んだ。
提案したADMDは、様々な複雑さのデータセットでテストされており、その性能は有望であるようだ。
関連論文リスト
- Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
本稿では,Parsimonious Dynamic Mode Decomposition (parsDMD)を紹介する。
ParsDMDは、時間的および純粋に時間的データの両方に対して最適にスパースされた動的モードのサブセットを自動選択するように設計された新しいアルゴリズムである。
定在波信号、隠れ力学の同定、流体力学シミュレーション、大気表面温度(SST)データなど、さまざまなデータセットで検証されている。
論文 参考訳(メタデータ) (2024-10-22T03:00:11Z) - Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models [0.0]
エントロピー回帰を用いた最適多段階動的モード分解モデルを決定する手法を提案する。
非一様時間空間を実現するために,高忠実度時間遅延MDDモデルを生成する手法を開発した。
これらのモデルは、非常に効率的で堅牢であることが示されている。
論文 参考訳(メタデータ) (2024-06-17T20:02:43Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Real-Time Motion Detection Using Dynamic Mode Decomposition [0.40964539027092906]
動的モード分解(DMD)に根ざしたストリーミングビデオデータに対する簡易かつ解釈可能なモーション検出アルゴリズムを提案する。
提案手法は,前景運動などの重要な映像特徴の進化と,DMDを映像セグメントに適用した結果となる行列の固有値との間には対応関係があることを生かしている。
論文 参考訳(メタデータ) (2024-05-08T13:52:14Z) - Dynamic Mode Decomposition for data-driven analysis and reduced-order
modelling of ExB plasmas: I. Extraction of spatiotemporally coherent patterns [3.203036813451742]
データ駆動解析とプラズマ力学の低次モデリングのための動的モード分解(DMD)アルゴリズムの一般性を評価する。
論文 参考訳(メタデータ) (2023-08-26T01:37:52Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
拡散モデル(DM)は、最近、様々な領域で生成モデリングを行うためのSoTAツールとして登場した。
本稿では、プログレッシブ信号変換が可能なDMの一般化されたファミリであるf-DMを提案する。
我々は、ダウンサンプリング、ぼやけ、学習された変換を含む様々な機能を持つ画像生成タスクにf-DMを適用した。
論文 参考訳(メタデータ) (2022-10-10T18:49:25Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、より柔軟で効率的なマルチスケールのクロスモーダルな特徴処理を実装している。
論文 参考訳(メタデータ) (2020-07-13T07:59:55Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。