論文の概要: Robust Factorization Methods Using a Gaussian/Uniform Mixture Model
- arxiv url: http://arxiv.org/abs/2012.08243v1
- Date: Tue, 15 Dec 2020 12:21:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 05:49:52.345653
- Title: Robust Factorization Methods Using a Gaussian/Uniform Mixture Model
- Title(参考訳): ガウス/ユニフォーム混合モデルを用いたロバスト因子化法
- Authors: Andrei Zaharescu and Radu Horaud
- Abstract要約: ガウス型/一様混合モデルとそのemアルゴリズムを提案する。
本稿では,任意のアフィン因子分解法に適合するロバストな手法を提案する。
我々は、アルゴリズムを検証し、既存のものと比較するために、多数の実験を行った。
- 参考スコア(独自算出の注目度): 24.756003635916613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we address the problem of building a class of robust
factorization algorithms that solve for the shape and motion parameters with
both affine (weak perspective) and perspective camera models. We introduce a
Gaussian/uniform mixture model and its associated EM algorithm. This allows us
to address robust parameter estimation within a data clustering approach. We
propose a robust technique that works with any affine factorization method and
makes it robust to outliers. In addition, we show how such a framework can be
further embedded into an iterative perspective factorization scheme. We carry
out a large number of experiments to validate our algorithms and to compare
them with existing ones. We also compare our approach with factorization
methods that use M-estimators.
- Abstract(参考訳): 本稿では,アフィン(弱視点)モデルと遠近距離カメラモデルの両方を用いて,形状と運動パラメータを解消するロバストな分解アルゴリズムのクラスを構築する問題に対処する。
ガウス型/一様混合モデルとそのemアルゴリズムを提案する。
これにより、データクラスタリングアプローチでロバストなパラメータ推定に対処できます。
本稿では,任意のアフィン因子分解法に適合するロバストな手法を提案する。
さらに,このようなフレームワークを反復的視点因子化スキームに組み込む方法を示す。
我々は、アルゴリズムを検証し、既存のものと比較するために、多数の実験を行った。
また,M推定器を用いた因子分解法との比較を行った。
関連論文リスト
- Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
低次元の組込み空間を使ってデータをクラスタする方法は、マシンラーニングにおいて依然として難しい問題である。
本稿では,クラスタリングと次元還元の両立を目的とした共同定式化を提案する。
我々のアルゴリズムはスパースガウス過程の混合に基づいており、スパースガウス過程混合クラスタリング(SGP-MIC)と呼ばれる。
論文 参考訳(メタデータ) (2023-03-23T20:44:36Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - A Non-Parametric Bootstrap for Spectral Clustering [0.7673339435080445]
我々は,データ行列のスペクトル分解と非パラメトリックブートストラップサンプリング方式を組み合わせた2つの新しいアルゴリズムを開発した。
我々の手法は、有限混合モデルに適合する他のブートストラップアルゴリズムと比較して収束性においてより一貫性がある。
論文 参考訳(メタデータ) (2022-09-13T08:37:05Z) - K-ARMA Models for Clustering Time Series Data [4.345882429229813]
K-Meansアルゴリズムのモデルベース一般化を用いた時系列データのクラスタリング手法を提案する。
クラスタリングアルゴリズムは,不確実な偏差基準を用いて,アウトレーヤに対して頑健にすることができることを示す。
我々は,時系列クラスタリングタスクにおいて,本手法が既存の手法と競合することを示す実データ実験を行った。
論文 参考訳(メタデータ) (2022-06-30T18:16:11Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
ユークリッド凸化関数の違いは、統計学と機械学習の異なるタイプの問題の違いとして記述できることを示す。
最終的に、より広い範囲、より広い範囲の作業を支援するのです。
論文 参考訳(メタデータ) (2022-06-22T23:57:40Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。