論文の概要: Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
- arxiv url: http://arxiv.org/abs/2310.20671v2
- Date: Thu, 30 Jan 2025 17:44:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:12:26.268347
- Title: Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
- Title(参考訳): 多変量時系列予測のための量子リカレントニューラルネットワークの密度行列エミュレーション
- Authors: José Daniel Viqueira, Daniel Faílde, Mariamo M. Juane, Andrés Gómez, David Mera,
- Abstract要約: QRNNの可能性を探求する主要な短期的な代替手段としてエミュレーションが生まれている。
時系列からの現在および過去の情報が回路を介してどのように送信されるかを示す。
我々は、学習可能なパラメータに関して、ネットワーク出力の分析勾配とヘシアンを導出する。
- 参考スコア(独自算出の注目度): 3.1690235522182104
- License:
- Abstract: Quantum Recurrent Neural Networks (QRNNs) are robust candidates for modelling and predicting future values in multivariate time series. However, the effective implementation of some QRNN models is limited by the need for mid-circuit measurements. Those increase the requirements for quantum hardware, which in the current NISQ era does not allow reliable computations. Emulation arises as the main near-term alternative to explore the potential of QRNNs, but existing quantum emulators are not dedicated to circuits with multiple intermediate measurements. In this context, we design a specific emulation method that relies on density matrix formalism. Using a compact tensor notation, we provide the mathematical formulation of the operator-sum representation involved. This allows us to show how the present and past information from a time series is transmitted through the circuit, and how to reduce the computational cost in every time step of the emulated network. In addition, we derive the analytical gradient and the Hessian of the network outputs with respect to its trainable parameters, which are needed when the outputs have stochastic noise due to hardware errors and a finite number of circuit shots (sampling). We finally test the presented methods using a hardware-efficient ansatz and four diverse datasets that include univariate and multivariate time series, with and without sampling noise. In addition, we compare the model with other existing quantum and classical approaches. Our results show how QRNNs can be trained with numerical and analytical gradients to make accurate predictions of future values by capturing non-trivial patterns of input series with different complexities.
- Abstract(参考訳): 量子リカレントニューラルネットワーク(QRNN)は、多変量時系列における将来の値のモデリングと予測のための堅牢な候補である。
しかし、いくつかのQRNNモデルの効果的な実装は、中間回路計測の必要性によって制限されている。
これらは、現在のNISQ時代に信頼性の高い計算を許さない量子ハードウェアの要求を増大させる。
エミュレーションはQRNNの可能性を探索する主要な短期的な代替手段として現れるが、既存の量子エミュレータは複数の中間測定値を持つ回路に特化していない。
この文脈では、密度行列形式に依存する特定のエミュレーション法を設計する。
コンパクトなテンソル表記法を用いて、関係する作用素-sum表現の数学的定式化を提供する。
これにより、時系列からの現在および過去の情報が回路を介してどのように送信され、エミュレートされたネットワークの時間ステップ毎に計算コストを削減するかを示すことができる。
さらに,ハードウェアエラーや回路ショット(サンプリング)の有限回数による確率的ノイズの場合に必要となる,トレーニング可能なパラメータに対して,ネットワーク出力の分析勾配とヘシアンを導出する。
ハードウェア効率の良いアンサッツと,単変量および多変量時系列を含む4つの多様なデータセットを用いて,ノイズをサンプリングすることなく,提示した手法を最終的に検証した。
さらに、このモデルを既存の量子および古典的アプローチと比較する。
以上の結果から,QRNNを数値的および解析的勾配で学習することにより,複雑な入力系列の非自明なパターンを抽出し,将来の値の正確な予測を行うことができることを示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum Optical Recurrent Neural Network for Online Processing of
Quantum Times Series [0.7087237546722617]
量子光リカレントニューラルネットワーク(QORNN)は,量子チャネルの伝送速度を高めることができることを示す。
また、同モデルが不要であれば、同様のメモリ効果に対処できることも示している。
我々は、この最後のタスクの小さなバージョンをフォトニックプロセッサのBorealis上で実行します。
論文 参考訳(メタデータ) (2023-05-31T19:19:25Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Learning temporal data with variational quantum recurrent neural network [0.5658123802733283]
パラメタライズド量子回路を用いて時間データを学習する手法を提案する。
この研究は、時間データの学習に複雑な量子力学を利用する方法を提供する。
論文 参考訳(メタデータ) (2020-12-21T10:47:28Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を用いたランダムサンプリングニューラルネットワーク(Random Smpling Neural Networks, RNN)を提案する。
RSNNの適用性をテストするために、横フィールドを持つIsingモデル、Fermi-Hubbardモデル、Spin-$1/2$$XXZ$モデルなど、正確に解決可能ないくつかの1Dモデルが使用されている。
論文 参考訳(メタデータ) (2020-11-10T15:52:44Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。