論文の概要: Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization
- arxiv url: http://arxiv.org/abs/2410.16982v1
- Date: Tue, 22 Oct 2024 13:02:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:59.580647
- Title: Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization
- Title(参考訳): 非凸最適化を用いたユークリッド距離からのサンプル高能率幾何再構成
- Authors: Ipsita Ghosh, Abiy Tasissa, Christian Kümmerle,
- Abstract要約: ユークリッド距離情報点対を埋め込む適切な点を見つける問題は、コアタスクとサブマシン学習の問題の両方として生じる。
本稿では,最小限のサンプル数を考えると,この問題を解決することを目的とする。
- 参考スコア(独自算出の注目度): 7.114174944371803
- License:
- Abstract: The problem of finding suitable point embedding or geometric configurations given only Euclidean distance information of point pairs arises both as a core task and as a sub-problem in a variety of machine learning applications. In this paper, we aim to solve this problem given a minimal number of distance samples. To this end, we leverage continuous and non-convex rank minimization formulations of the problem and establish a local convergence guarantee for a variant of iteratively reweighted least squares (IRLS), which applies if a minimal random set of observed distances is provided. As a technical tool, we establish a restricted isometry property (RIP) restricted to a tangent space of the manifold of symmetric rank-$r$ matrices given random Euclidean distance measurements, which might be of independent interest for the analysis of other non-convex approaches. Furthermore, we assess data efficiency, scalability and generalizability of different reconstruction algorithms through numerical experiments with simulated data as well as real-world data, demonstrating the proposed algorithm's ability to identify the underlying geometry from fewer distance samples compared to the state-of-the-art.
- Abstract(参考訳): 点対のユークリッド距離情報のみを与えられた適切な点埋め込みや幾何学的構成を見つける問題は、様々な機械学習アプリケーションにおいて、コアタスクとサブプロブレムの両方として現れる。
本稿では,最小限の距離サンプルからこの問題を解決することを目的とする。
この目的のために、問題の連続的および非凸的階数最小化の定式化を活用し、観測距離の最小ランダムなセットが提供される場合に適用される反復再重み付き最小二乗(IRLS)の変種に対する局所収束保証を確立する。
技術的ツールとして、対称階数-$r$行列の多様体の接空間に制限された制限等尺性(RIP)を確立する。
さらに、シミュレーションデータと実世界のデータを用いた数値実験により、異なる再構成アルゴリズムのデータ効率、スケーラビリティ、一般化可能性を評価し、提案アルゴリズムは、最先端技術と比較して、より少ない距離サンプルから基礎となる幾何学を識別する能力を実証する。
関連論文リスト
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - Recovering Simultaneously Structured Data via Non-Convex Iteratively
Reweighted Least Squares [0.8702432681310401]
線形観測から多種多様低次元構造に固執するデータを復元する新しいアルゴリズムを提案する。
IRLS法は,低/複合状態の計測に好適であることを示す。
論文 参考訳(メタデータ) (2023-06-08T06:35:47Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
本稿では,メッシュのスライスされたワッサーシュタイン距離を,セットベースアプローチを一般化する確率測度として表現したメッシュ変形の学習指標を提案する。
論文 参考訳(メタデータ) (2023-05-27T19:10:19Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - Matrix factorisation and the interpretation of geodesic distance [6.445605125467574]
グラフや類似性行列が与えられた場合、ノード間の真の距離の概念を回復する問題を考察する。
行列の分解と非線形次元の減少という2つのステップで達成できることが示される。
論文 参考訳(メタデータ) (2021-06-02T16:11:33Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
本研究では,多元的固有ベクトルを分散制約で同時に計算するTruncated Orthogonal Iterationの2つの変種を提案する。
次に,我々のアルゴリズムを適用して,幅広いテストデータセットに対するスパース原理成分分析問題を解く。
論文 参考訳(メタデータ) (2021-03-24T23:11:32Z) - New Methods for Detecting Concentric Objects With High Accuracy [0.0]
デジタルデータに幾何学的オブジェクトを適合させることは、虹彩検出、自律ナビゲーション、産業ロボット操作など、多くの分野において重要な問題である。
データに幾何学的形状を合わせるには、幾何学的(定形)アプローチと代数的(非定形)アプローチの2つの一般的なアプローチがある。
他の反復的手法の信頼性の高い初期推定として使用できる新しい推定器を開発した。
論文 参考訳(メタデータ) (2021-02-16T08:19:18Z) - Stochastic Approximation for Online Tensorial Independent Component
Analysis [98.34292831923335]
独立成分分析(ICA)は統計機械学習や信号処理において一般的な次元削減ツールである。
本稿では,各独立成分を推定する副産物オンライン時系列アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T18:52:37Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。