論文の概要: Between Shor and Steane: A unifying construction for measuring error
syndromes
- arxiv url: http://arxiv.org/abs/2012.15403v2
- Date: Thu, 11 Feb 2021 18:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 05:54:24.932366
- Title: Between Shor and Steane: A unifying construction for measuring error
syndromes
- Title(参考訳): Shor と Steane の間: エラー症候群を計測するための統一構成
- Authors: Shilin Huang and Kenneth R. Brown
- Abstract要約: ShorとSteaneの間を横切るアンシラブロックのファミリーを生成する統一的な構造を見つける。
このファミリーは、エラーを耐障害的に測定するために必要な測定ラウンドを減らすことと引き換えに、アンシラ構築の複雑さを増大させる。
この手法は任意のCalderbank-Shor-Steane符号に適用でき、フォールトトレラント量子計算を最適化するための新しい方向を示す。
- 参考スコア(独自算出の注目度): 0.913755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum error correction requires the measurement of error
syndromes in a way that minimizes correlated errors on the quantum data. Steane
and Shor ancilla are two well-known methods for fault-tolerant syndrome
extraction. In this paper, we find a unifying construction that generates a
family of ancilla blocks that interpolate between Shor and Steane. This family
increases the complexity of ancilla construction in exchange for reducing the
rounds of measurement required to fault-tolerantly measure the error. We then
apply this construction to the toric code of size $L\times L$ and find that
blocks of size $m\times m$ can be used to decode errors in $O(L/m)$ rounds of
measurements. Our method can be applied to any Calderbank-Shor-Steane codes and
presents a new direction for optimizing fault-tolerant quantum computation.
- Abstract(参考訳): フォールトトレラント量子誤差補正は、量子データ上の相関誤差を最小化する方法でエラーシンドロームを測定する必要がある。
steaneとshor ancillaは、フォールトトレラントシンドロームの抽出法としてよく知られている。
本稿では,shor と steane の間を補間するアンシラブロック群を生成する統一構造を見いだす。
このファミリーは、エラーを耐障害的に測定するために必要な測定ラウンドを減らすために、アンシラ構築の複雑さを増大させる。
次に、この構成を$L\times L$のトーリックコードに適用し、$m\times m$のブロックを使って、$O(L/m)$の計測ラウンドでエラーを復号できることを示す。
この手法は任意のCalderbank-Shor-Steane符号に適用でき、フォールトトレラント量子計算を最適化するための新しい方向を示す。
関連論文リスト
- Error budget of parametric resonance entangling gate with a tunable coupler [0.0]
可変カプラアーキテクチャにおけるパラメトリック共振ゲートの実験誤差予算を解析する。
主に2ビットの緩和と白色雑音による劣化に起因する不整合誤差は、2ビットのゲートの忠実さを制限する。
非計算状態への漏洩は、2ビットゲートの不忠実性に対する2番目に大きな寄与である。
論文 参考訳(メタデータ) (2024-02-06T18:46:27Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
共振結合された一対のトランスモンからなる「デュアルレール量子ビット」が高コヒーレントな消去量子ビットを形成することを示す。
我々は、チェック毎に0.1%$ dephasingエラーを導入しながら、消去エラーの中間回路検出を実演する。
この研究は、ハードウェア効率の量子誤り訂正のための魅力的なビルディングブロックとして、トランスモンベースのデュアルレールキュービットを確立する。
論文 参考訳(メタデータ) (2023-07-17T18:00:01Z) - Demonstrating a superconducting dual-rail cavity qubit with
erasure-detected logical measurements [1.8914818474995836]
両線量子ビットのアイドリング誤差を計測するために, 統合消去検出を用いた射影論理測定を実演する。
論理状態の生成と測定誤差を0.01%$レベルで測定し,99%以上の空洞崩壊事象を消去として検出する。
これらの結果は、2重レール消去量子ビットを高効率な消去符号に変換するのに必要な誤差階層を初めて確認したことを示す。
論文 参考訳(メタデータ) (2023-07-06T17:52:00Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Lattice Gauge Theories (LGT) の量子シミュレーションは、物理セクターと非物理セクターの両方を含む拡大されたヒルベルト空間上でしばしば定式化される。
本稿では,位相フリップ誤り訂正符号とガウス法則を組み合わせることで,そのような冗長性を利用する簡易なフォールトトレラント法を提案する。
論文 参考訳(メタデータ) (2021-12-09T19:29:34Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Fault-Tolerant Operation of a Quantum Error-Correction Code [1.835073691235972]
量子誤り訂正は、脆弱な量子情報をより大きな量子系に符号化することによって保護する。
フォールトトレラント回路は論理量子ビットを操作しながらエラーの拡散を含む。
我々は,現在の量子システムにおいて,フォールトトレラント回路が高精度な論理プリミティブを実現することを示す。
論文 参考訳(メタデータ) (2020-09-24T04:31:38Z) - Beyond single-shot fault-tolerant quantum error correction [0.7734726150561088]
フォールトトレラントな量子誤差補正は,任意のコードに対して$O(d log(d))$測定によって実現できることを示す。
r未満の測定値を用いたサブシングルショットフォールトトレラント量子誤り訂正法の存在を実証する。
論文 参考訳(メタデータ) (2020-02-12T19:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。