Continuous Glucose Monitoring Prediction
- URL: http://arxiv.org/abs/2101.02557v1
- Date: Mon, 4 Jan 2021 21:32:20 GMT
- Title: Continuous Glucose Monitoring Prediction
- Authors: Julia Ann Jose, Trae Waggoner, Sudarsan Manikandan
- Abstract summary: Diabetes is one of the deadliest diseases in the world and affects nearly 10 percent of the global adult population.
One major development is a system called continuous blood glucose monitoring (CGM)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes is one of the deadliest diseases in the world and affects nearly 10
percent of the global adult population. Fortunately, powerful new technologies
allow for a consistent and reliable treatment plan for people with diabetes.
One major development is a system called continuous blood glucose monitoring
(CGM). In this review, we look at three different continuous meal detection
algorithms that were developed using given CGM data from patients with
diabetes. From this analysis, an initial meal prediction algorithm was also
developed utilizing these methods.
Related papers
- Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
arXiv Detail & Related papers (2024-10-04T12:52:49Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
arXiv Detail & Related papers (2023-08-02T14:10:03Z) - Early Stage Diabetes Prediction via Extreme Learning Machine [0.0]
Forty-six percent of people with diabetes have not been diagnosed.
Diabetes can develop several other severe diseases that can lead to patient death.
This paper proposed a novel approach based on an extreme learning machine for diabetes prediction based on a data questionnaire.
arXiv Detail & Related papers (2022-02-22T22:23:59Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Enhancing Food Intake Tracking in Long-Term Care with Automated Food
Imaging and Nutrient Intake Tracking (AFINI-T) Technology [71.37011431958805]
Half of long-term care (LTC) residents are malnourished increasing hospitalization, mortality, morbidity, with lower quality of life.
This paper presents the automated food imaging and nutrient intake tracking (AFINI-T) technology designed for LTC.
arXiv Detail & Related papers (2021-12-08T22:25:52Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Hybrid stacked ensemble combined with genetic algorithms for Prediction
of Diabetes [0.0]
Diabetes is one of the most common, dangerous, and costly diseases in the world.
In this study, we use the experimental data, real data on Indian diabetics on the University of California website.
Results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.
arXiv Detail & Related papers (2021-03-15T07:47:23Z) - The Diabetic Buddy: A Diet Regulator andTracking System for Diabetics [3.7026481341955053]
The prevalence of diabetes in the Middle East is 17-20%, which is well above the global average of 8-9%.
This paper presents an automatic way of tracking continuous glucose and food intake of diabetics using off-the-shelf sensors and machine learning.
arXiv Detail & Related papers (2021-01-08T20:03:58Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.