論文の概要: Dimension of Tensor Network varieties
- arxiv url: http://arxiv.org/abs/2101.03148v2
- Date: Mon, 1 Aug 2022 18:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 08:17:48.331710
- Title: Dimension of Tensor Network varieties
- Title(参考訳): テンソルネットワーク多様体の次元
- Authors: Alessandra Bernardi, Claudia De Lazzari, Fulvio Gesmundo
- Abstract要約: テンソルネットワーク多様体の次元上の上限を決定する。
洗練された上界は、行列積状態の多様体や射影絡み合ったペア状態のような応用に関係している場合に与えられる。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The tensor network variety is a variety of tensors associated to a graph and
a set of positive integer weights on its edges, called bond dimensions. We
determine an upper bound on the dimension of the tensor network variety. A
refined upper bound is given in cases relevant for applications such as
varieties of matrix product states and projected entangled pairs states. We
provide a range (the "supercritical range") of the parameters where the upper
bound is sharp.
- Abstract(参考訳): テンソルネットワーク多様体(tensor network variety)は、グラフに付随する様々なテンソルとその辺上の正の整数重みの集合であり、結合次元と呼ばれる。
テンソルネットワーク多様体の次元上の上限を決定する。
洗練された上界は、行列積状態の多様体や射影絡み合ったペア状態のような応用に関係している場合に与えられる。
上界が鋭いパラメータの範囲(超臨界範囲)を提供する。
関連論文リスト
- Compressing multivariate functions with tree tensor networks [0.0]
1次元テンソルネットワークは、連続関数の数値アンザッツとしてますます利用されている。
構造木テンソルネットワークが、一般的に使用されるテンソルトレインよりもはるかに効率的なアンザッツを提供することを示す。
論文 参考訳(メタデータ) (2024-10-04T16:20:52Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - One-step replica symmetry breaking in the language of tensor networks [0.913755431537592]
我々は1段階のレプリカ対称性破断空洞法とテンソルネットワークの正確なマッピングを開発する。
この2つのスキームは補足的な数学的および数値的なツールボックスを備えており、芸術のそれぞれの状態を改善するために利用することができる。
論文 参考訳(メタデータ) (2023-06-26T18:42:51Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
我々は, テンソル全体の精度保証を行う。
結果は数値実験により検証され、高次テンソルに対するクロス近似の有用性に重要な意味を持つ可能性がある。
論文 参考訳(メタデータ) (2022-07-09T19:33:59Z) - Superposed Random Spin Tensor Networks and their Holographic Properties [0.0]
投影対状態(PEPS)に類似して定義されるスピンネットワーク状態のクラスにおける境界-境界ホログラフィーについて検討する。
グラフ上のよく定義された離散幾何学に対応する状態の重ね合わせを考える。
論文 参考訳(メタデータ) (2022-05-19T12:24:57Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
AdS/CFT対応の重要な側面は、双曲格子上のテンソルネットワークモデルの観点から捉えることができる。
マッチゲート制約を満たすテンソルに対しては、これらは以前、乱れた境界状態を生成することが示されている。
これらのハミルトニアンは、解析的な玩具モデルによって捉えられたマルチスケールの準周期対称性を示す。
論文 参考訳(メタデータ) (2021-10-06T18:00:03Z) - Lower and Upper Bounds on the VC-Dimension of Tensor Network Models [8.997952791113232]
ネットワーク法は凝縮物質物理学の進歩の重要な要素である。
これらは指数関数的に大きな特徴空間で線形モデルを効率的に学習するのに使うことができる。
本研究では,大きなテンソルネットワークモデルのVC次元と擬次元の上下境界を導出する。
論文 参考訳(メタデータ) (2021-06-22T14:39:25Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
テンソルの集合をコンパクトに表現するための概念である T-Basis をニューラルネットワークでよく見られる任意の形状で導入する。
ニューラルネットワーク圧縮の課題に対する提案手法の評価を行い, 許容性能低下時に高い圧縮速度に達することを示す。
論文 参考訳(メタデータ) (2020-07-13T19:03:22Z) - Optimization at the boundary of the tensor network variety [2.1839191255085995]
テンソルネットワーク状態は、量子多体系の研究で広く用いられる変分アンザッツ類を形成する。
最近の研究により、この多様体の境界上の状態は、物理的興味のある状態に対するより効率的な表現をもたらすことが示されている。
局所ハミルトンの基底状態を見つけるために、このクラスを最適化する方法を示す。
論文 参考訳(メタデータ) (2020-06-30T16:58:55Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
メッシュ上の畳み込みを定義する一般的なアプローチは、それらをグラフとして解釈し、グラフ畳み込みネットワーク(GCN)を適用することである。
本稿では、GCNを一般化して異方性ゲージ同変カーネルを適用するGauge Equivariant Mesh CNNを提案する。
本実験は,従来のGCNおよび他の手法と比較して,提案手法の表現性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-03-11T17:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。