論文の概要: B-HAR: an open-source baseline framework for in depth study of human
activity recognition datasets and workflows
- arxiv url: http://arxiv.org/abs/2101.10870v1
- Date: Sat, 23 Jan 2021 12:42:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 10:49:32.888976
- Title: B-HAR: an open-source baseline framework for in depth study of human
activity recognition datasets and workflows
- Title(参考訳): B-HAR:人間の活動認識データセットとワークフローを深く研究するためのオープンソースのベースラインフレームワーク
- Authors: Florenc Demrozi, Cristian Turetta, Graziano Pravadelli
- Abstract要約: 本稿では,ベースラインフレームワークの定義,標準化,開発のためのオープンソースフレームワークであるB-HARを提案する。
データ準備のための最も一般的なデータ処理方法と、最も一般的な機械学習およびディープラーニングパターン認識モデルを実装している。
- 参考スコア(独自算出の注目度): 2.277447144331876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Activity Recognition (HAR), based on machine and deep learning
algorithms is considered one of the most promising technologies to monitor
professional and daily life activities for different categories of people
(e.g., athletes, elderly, kids, employers) in order to provide a variety of
services related, for example to well-being, empowering of technical
performances, prevention of risky situation, and educational purposes. However,
the analysis of the effectiveness and the efficiency of HAR methodologies
suffers from the lack of a standard workflow, which might represent the
baseline for the estimation of the quality of the developed pattern recognition
models. This makes the comparison among different approaches a challenging
task. In addition, researchers can make mistakes that, when not detected,
definitely affect the achieved results. To mitigate such issues, this paper
proposes an open-source automatic and highly configurable framework, named
B-HAR, for the definition, standardization, and development of a baseline
framework in order to evaluate and compare HAR methodologies. It implements the
most popular data processing methods for data preparation and the most commonly
used machine and deep learning pattern recognition models.
- Abstract(参考訳): 機械学習アルゴリズムに基づくヒューマンアクティビティ認識(HAR)は、様々なカテゴリーの人々(例えば、アスリート、高齢者、子供、雇用主)の職業的および日常生活活動を監視する最も有望な技術の一つと考えられており、福祉、技術的パフォーマンスの強化、リスク状況の防止、教育目的など、様々なサービスを提供している。
しかし,HAR手法の有効性と効率性の分析は,パターン認識モデルの品質評価の基準となる標準ワークフローの欠如に悩まされている。
これにより、異なるアプローチの比較が困難なタスクになる。
さらに、研究者は、検出されない場合、達成した結果に確実に影響を及ぼす間違いを犯すことができる。
そこで本稿では,HAR手法の評価と比較を目的としたベースラインフレームワークの定義,標準化,開発のための,B-HARというオープンソースの自動・高構成可能なフレームワークを提案する。
データ準備のための最も一般的なデータ処理方法と、最も一般的な機械学習およびディープラーニングパターン認識モデルを実装している。
関連論文リスト
- Behaviour Discriminator: A Simple Data Filtering Method to Improve
Offline Policy Learning [18.19763817325596]
本稿では,環境とのインタラクションを必要とせずに制御政策を学習する問題を考察する。
本稿では,半教師付き学習に基づく行動識別器(BD)の概念,新しいシンプルなデータフィルタリング手法を提案する。
論文 参考訳(メタデータ) (2023-01-27T14:17:45Z) - Making Machine Learning Datasets and Models FAIR for HPC: A Methodology
and Case Study [0.0]
FAIR Guiding Principlesは、デジタルコンテンツの発見可能性、アクセシビリティ、相互運用性、再利用性を改善することを目的としている。
これらの原則は、ハイパフォーマンスコンピューティングのための機械学習ベースのプログラム分析と最適化の分野において、まだ広く採用されていない。
我々は、既存のFAIRness評価と改善技術を調査した後、HPCデータセットと機械学習モデルFAIRを作成する手法を設計する。
論文 参考訳(メタデータ) (2022-11-03T18:45:46Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal
Human Activity Recognition [1.869225486385596]
複数のモダリティを活用することによって、より良い認識がもたらされるという仮説を探求する。
我々は、近年、人間活動認識の課題に対して、多くの対照的な自己監督的アプローチを拡張している。
マルチモーダルな自己教師型学習を実現するための,フレキシブルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-20T10:39:16Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Maximum Entropy Model-based Reinforcement Learning [0.0]
この研究は、探索技術とモデルに基づく強化学習を結びつけている。
モデルベースアプローチの特徴を考慮した新しい探索手法を考案した。
また,本手法がモデルベースアルゴリズムDreamerの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2021-12-02T13:07:29Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Efficient Realistic Data Generation Framework leveraging Deep
Learning-based Human Digitization [0.0]
提案手法は、実際の背景画像として入力され、さまざまなポーズで人物を投入する。
対応するタスクのベンチマークと評価は、実データに対する補足として、合成データが効果的に使用できることを示している。
論文 参考訳(メタデータ) (2021-06-28T08:07:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。