論文の概要: Real-Time Optimal Trajectory Planning for Autonomous Vehicles and Lap
Time Simulation Using Machine Learning
- arxiv url: http://arxiv.org/abs/2102.02315v2
- Date: Fri, 5 Feb 2021 10:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 12:49:11.457920
- Title: Real-Time Optimal Trajectory Planning for Autonomous Vehicles and Lap
Time Simulation Using Machine Learning
- Title(参考訳): 自動運転車のリアルタイム最適軌道計画と機械学習によるラップタイムシミュレーション
- Authors: Sam Garlick and Andrew Bradley
- Abstract要約: 本稿では,デスクトップ処理ハードウェア上でリアルタイムにレースラインの正確な予測を生成するための機械学習アプローチについて述べる。
ネットワークは、平均絶対誤差 +/-0.27m でレースラインを予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread development of driverless vehicles has led to the formation of
autonomous racing competitions, where the high speeds and fierce rivalry in
motorsport provide a testbed to accelerate technology development. A particular
challenge for an autonomous vehicle is that of identifying a target trajectory
- or in the case of a racing car, the ideal racing line. Many existing
approaches to identifying the racing line are either not the time-optimal
solutions, or have solution times which are computationally expensive, thus
rendering them unsuitable for real-time application using on-board processing
hardware. This paper describes a machine learning approach to generating an
accurate prediction of the racing line in real-time on desktop processing
hardware. The proposed algorithm is a dense feed-forward neural network,
trained using a dataset comprising racing lines for a large number of circuits
calculated via a traditional optimal control lap time simulation. The network
is capable of predicting the racing line with a mean absolute error of
+/-0.27m, meaning that the accuracy outperforms a human driver, and is
comparable to other parts of the autonomous vehicle control system. The system
generates predictions within 33ms, making it over 9,000 times faster than
traditional methods of finding the optimal racing line. Results suggest that a
data-driven approach may therefore be favourable for real-time generation of
near-optimal racing lines than traditional computational methods.
- Abstract(参考訳): ドライバーレス車両の広範な開発は、モータースポーツの高速と激しい競争が技術開発を加速するためのテストベッドを提供する自律レース競争の形成をもたらしました。
自動運転車の特に課題は、目標の軌道を識別することである - あるいは、レーシングカーの場合、理想的なレースラインである。
レースラインを特定するための既存のアプローチの多くは、時間最適化ソリューションではないか、あるいは計算コストのかかるソリューション時間を持っているため、オンボード処理ハードウェアを使用したリアルタイムアプリケーションには適さない。
本稿では,デスクトップ処理ハードウェア上でリアルタイムにレースラインを正確に予測する機械学習手法について述べる。
提案アルゴリズムは,従来の最適制御ラップタイムシミュレーションにより計算された多数の回路のレースラインを含むデータセットを用いて学習する,高密度なフィードフォワードニューラルネットワークである。
このネットワークは、平均絶対誤差+/-0.27mでレースラインを予測できるので、精度は人間のドライバーより優れており、自動運転車制御システムの他の部分と同等である。
システムは33ms以内の予測を生成し、最適なレースラインを見つける従来の方法の9000倍以上高速になります。
結果から,データ駆動型アプローチは従来の計算手法よりも,ほぼ最適なレースラインのリアルタイム生成に好適であることが示唆された。
関連論文リスト
- Vehicle Dynamics Modeling for Autonomous Racing Using Gaussian Processes [0.0]
本稿では,自動走行における車両動力学の近似におけるGPモデルの適用性について,最も詳細な解析を行った。
人気のあるF1TENTHレーシングプラットフォームのための動的および拡張キネマティックモデルを構築した。
論文 参考訳(メタデータ) (2023-06-06T04:53:06Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - An Adaptive Human Driver Model for Realistic Race Car Simulations [25.67586167621258]
我々は、レースドライバーの振る舞いをよりよく理解し、模倣学習に基づく適応的な人間のレースドライバーモデルを導入する。
我々のフレームワークは、ほぼ人間に近い性能で、目に見えないレーストラック上で、現実的な走行線分布を作成できることを示します。
論文 参考訳(メタデータ) (2022-03-03T18:39:50Z) - Indy Autonomous Challenge -- Autonomous Race Cars at the Handling Limits [81.22616193933021]
TUM Auton-omous Motorsportsは2021年10月、インディ・オートマチック・チャレンジに参加する。
インディアナポリス・モーター・スピードウェイのダララAV-21レースカー10台のうち1台を走らせることで、自動運転のソフトウェアスタックをベンチマークする。
これは、最も困難で稀な状況をマスターできる自律走行アルゴリズムを開発するための理想的な試験場である。
論文 参考訳(メタデータ) (2022-02-08T11:55:05Z) - Race Driver Evaluation at a Driving Simulator using a physical Model and
a Machine Learning Approach [1.9395755884693817]
本稿では,ドライバー・イン・ザ・ループシミュレータ上でのレースドライバーの研究と評価を行う。
ドライバーを評価するために、総合的なパフォーマンススコア、車両軌道スコア、ハンドリングスコアを導入する。
ニューラルネットワークは2-5%のルート平均二乗誤差で正確で堅牢であり、最適化に基づく手法を置き換えることができることを示す。
論文 参考訳(メタデータ) (2022-01-27T07:32:32Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement
Learning [39.719051858649216]
高忠実度物理カーシミュレーションを利用した自律走行車レース学習システムを提案する。
私たちは、異なるレースカーとトラックのリアルな物理シミュレーションで知られている世界主導の自動車シミュレータであるGran Turismo Sportにシステムをデプロイしました。
私たちのトレーニングされたポリシーは、組み込みAIによってこれまで達成された以上の自律的なレースパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-08-18T15:06:44Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - DeepRacing: Parameterized Trajectories for Autonomous Racing [0.0]
現実的なF1環境での高速自律レースの課題を考察する。
DeepRacingは、新しいエンドツーエンドフレームワークであり、自律レースのためのアルゴリズムのトレーニングと評価のための仮想テストベッドである。
この仮想テストベッドは、スタンドアロンのC++ APIと人気のあるRobot Operating System 2 (ROS2)フレームワークへのバインディングの両方として、オープンソースライセンスでリリースされている。
論文 参考訳(メタデータ) (2020-05-06T21:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。