論文の概要: Relaxation of optimal transport problem via strictly convex functions
- arxiv url: http://arxiv.org/abs/2102.07336v1
- Date: Mon, 15 Feb 2021 04:32:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 15:28:48.786884
- Title: Relaxation of optimal transport problem via strictly convex functions
- Title(参考訳): 厳密な凸関数による最適輸送問題の緩和
- Authors: Asuka Takatsu
- Abstract要約: 有限空間上の最適輸送問題は線形プログラムである。
近年,厳密な凸関数による最適輸送問題の緩和,特にKulback-Leiblerの発散により,データ科学に新たな光を当てている。
本稿では,ブレグマン発散による緩和された最適輸送問題に対する勾配勾配に基づく数学的基礎と反復過程について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An optimal transport problem on finite spaces is a linear program. Recently,
a relaxation of the optimal transport problem via strictly convex functions,
especially via the Kullback--Leibler divergence, sheds new light on data
sciences. This paper provides the mathematical foundations and an iterative
process based on a gradient descent for the relaxed optimal transport problem
via Bregman divergences.
- Abstract(参考訳): 有限空間上の最適輸送問題は線形プログラムである。
近年,厳密な凸関数による最適輸送問題の緩和,特にKulback-Leiblerの発散により,データ科学に新たな光を当てている。
本稿では,ブレグマン発散による緩和された最適輸送問題に対する勾配勾配に基づく数学的基礎と反復過程について述べる。
関連論文リスト
- Conditional Optimal Transport on Function Spaces [53.9025059364831]
ブロック三角形モンジュ写像を記述した制約付き最適輸送問題の理論を開発する。
これは、一般的なコスト関数を持つ分離可能な無限次元函数空間への最適三角輸送の理論を一般化する。
本稿では,機能パラメータの非道徳的および可能性のない推論に対する理論的結果の計算的適用性を示す数値実験を行う。
論文 参考訳(メタデータ) (2023-11-09T18:44:42Z) - A Computational Framework for Solving Wasserstein Lagrangian Flows [48.87656245464521]
一般に、最適密度経路は未知であり、これらの変動問題の解法は計算的に困難である。
本稿では,これらすべての問題に統一的な視点からアプローチする,新しいディープラーニングベースのフレームワークを提案する。
提案手法は, 単セル軌道推定における従来の手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-16T17:59:54Z) - Optimal Transport with Tempered Exponential Measures [33.07787452859956]
間接測度正規化を伴う指数族を一般化することは、非常に便利な中核となる。
我々の定式化は、不均衡な最適輸送問題設定に自然に適合する。
論文 参考訳(メタデータ) (2023-09-07T20:53:23Z) - New Perspectives on Regularization and Computation in Optimal
Transport-Based Distributionally Robust Optimization [8.564319625930892]
本研究では, 有限の輸送コストで所定の基準分布による不確実な問題パラメータの分布を選択することができるような, 最適輸送に基づく分布安定度最適化問題について検討する。
論文 参考訳(メタデータ) (2023-03-07T13:52:32Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOTは最適な輸送の情報理論の拡張である。
幾何学的距離を最小化しながら、ドメイン間の相互情報を最大化する。
この定式化は、外れ値に対して堅牢な新しい射影法をもたらし、目に見えないサンプルに一般化する。
論文 参考訳(メタデータ) (2022-10-06T18:55:41Z) - Constrained Mass Optimal Transport [0.0]
本稿では,制約付き最適輸送の問題を紹介する。
アルゴリズムの族は制約付きサドル点問題のクラスを解くために導入された。
収束証明と数値結果を示す。
論文 参考訳(メタデータ) (2022-06-05T06:47:25Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Feature Robust Optimal Transport for High-dimensional Data [125.04654605998618]
本研究では,高次元データに対する特徴量ロバスト最適輸送(FROT)を提案する。
実世界の意味対応データセットにおいて,FROTアルゴリズムが最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-05-25T14:07:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。