論文の概要: Functional neural network for decision processing, a racing network of
programmable neurons with fuzzy logic where the target operating model relies
on the network itself
- arxiv url: http://arxiv.org/abs/2102.12339v1
- Date: Wed, 24 Feb 2021 15:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-10 00:55:39.178642
- Title: Functional neural network for decision processing, a racing network of
programmable neurons with fuzzy logic where the target operating model relies
on the network itself
- Title(参考訳): 対象動作モデルがネットワーク自体に依存するファジィ論理を持つプログラム可能なニューロンのレースネットワークである決定処理のための機能的ニューラルネットワーク
- Authors: Frederic Jumelle, Kelvin So, Didan Deng
- Abstract要約: 本稿では,人間の意思決定過程をモデル化する関数型ニューラルネットワークである,人工知能の新しいモデルを提案する。
この機能的ニューラルネットワークは、意思決定の計算方法を変革する有望な可能性を秘めている、と私たちは信じています。
- 参考スコア(独自算出の注目度): 1.1602089225841632
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we are introducing a novel model of artificial intelligence,
the functional neural network for modeling of human decision-making processes.
This neural network is composed of multiple artificial neurons racing in the
network. Each of these neurons has a similar structure programmed independently
by the users and composed of an intention wheel, a motor core and a sensory
core representing the user itself and racing at a specific velocity. The
mathematics of the neuron's formulation and the racing mechanism of multiple
nodes in the network will be discussed, and the group decision process with
fuzzy logic and the transformation of these conceptual methods into practical
methods of simulation and in operations will be developed. Eventually, we will
describe some possible future research directions in the fields of finance,
education and medicine including the opportunity to design an intelligent
learning agent with application in business operations supervision. We believe
that this functional neural network has a promising potential to transform the
way we can compute decision-making and lead to a new generation of neuromorphic
chips for seamless human-machine interactions.
- Abstract(参考訳): 本稿では,人間の意思決定過程のモデリングのための関数型ニューラルネットワークである人工知能の新しいモデルを提案する。
このニューラルネットワークは、ネットワーク内での複数の人工ニューロンからなる。
これらのニューロンはそれぞれ、ユーザが独自にプログラムした類似の構造を持ち、意図車輪、モーターコア、感覚コアで構成され、ユーザ自身を表現し、特定の速度でレースする。
ニューロンの定式化の数学とネットワーク内の複数のノードのレース機構について議論し、ファジィ論理を用いた群決定プロセスとこれらの概念的手法をシミュレーションおよび操作の実践的な方法に変換する。
今後,金融・教育・医学分野における今後の研究の方向性について述べるとともに,事業運営の監督に応用した知的学習エージェントを設計する機会について述べる。
この機能的ニューラルネットワークは、意思決定の計算方法を変革し、シームレスなヒューマンマシンインタラクションのための新しい世代のニューロモルフィックチップへと導く有望な可能性を秘めていると信じています。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Toward stochastic neural computing [11.955322183964201]
本稿では,ノイズ入力のストリームをスパイキングニューロンの集団によって変換し,処理するニューラルコンピューティングの理論を提案する。
本手法をIntelのLoihiニューロモルフィックハードウェアに適用する。
論文 参考訳(メタデータ) (2023-05-23T12:05:35Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - A multi-agent model for growing spiking neural networks [0.0]
このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
論文 参考訳(メタデータ) (2020-09-21T15:11:29Z) - Training spiking neural networks using reinforcement learning [0.0]
本稿では,スパイクニューラルネットワークのトレーニングを容易にするために,生物学的に有望なバックプロパゲーション代替法を提案する。
本研究では,空間的・時間的信用割当問題の解決における強化学習規則の適用可能性を検討することに注力する。
我々は、グリッドワールド、カートポール、マウンテンカーといった従来のRLドメインに適用することで、2つのアプローチを比較し、対比する。
論文 参考訳(メタデータ) (2020-05-12T17:40:36Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。