論文の概要: Uncertainty Quantification by Ensemble Learning for Computational
Optical Form Measurements
- arxiv url: http://arxiv.org/abs/2103.01259v1
- Date: Mon, 1 Mar 2021 19:11:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 03:02:08.444175
- Title: Uncertainty Quantification by Ensemble Learning for Computational
Optical Form Measurements
- Title(参考訳): オプティカルフォーム計測のためのアンサンブル学習による不確かさ定量化
- Authors: Lara Hoffmann, Ines Fortmeier and Clemens Elster
- Abstract要約: アンサンブル学習による不確かさの定量化は、計算光学式測定による応用の観点から検討する。
提案されたアプリケーションは、実世界のアプリケーションにおける高次元データに対する信頼できる予測を行うためのアンサンブル手法の能力を例示する。
- 参考スコア(独自算出の注目度): 0.618778092044887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification by ensemble learning is explored in terms of an
application from computational optical form measurements. The application
requires to solve a large-scale, nonlinear inverse problem. Ensemble learning
is used to extend a recently developed deep learning approach for this
application in order to provide an uncertainty quantification of its predicted
solution to the inverse problem. By systematically inserting
out-of-distribution errors as well as noisy data the reliability of the
developed uncertainty quantification is explored. Results are encouraging and
the proposed application exemplifies the ability of ensemble methods to make
trustworthy predictions on high dimensional data in a real-world application.
- Abstract(参考訳): アンサンブル学習による不確かさの定量化は、計算光学式測定による応用の観点から検討する。
アプリケーションは、大規模な非線形逆問題を解決する必要があります。
エンサンブル学習は、このアプリケーションのために最近開発されたディープラーニングアプローチを拡張するために使用され、逆問題に対する予測ソリューションの不確実性定量を提供します。
不確実性定量化の信頼性を体系的に分散エラーやノイズデータに挿入することで探究します。
提案したアプリケーションは,実世界のアプリケーションにおいて,高次元データに対する信頼に値する予測を行うためのアンサンブル手法の能力を実証する。
関連論文リスト
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning [1.8175282137722093]
科学機械学習(SciML)における不確実性(UQ)は、SciMLの強力な予測力と、学習したモデルの信頼性を定量化する方法を組み合わせる。
我々は、SciMLと粘性ハミルトン-ヤコビ偏微分方程式(HJ PDE)で生じるいくつかのベイズ推論問題の間の新しい理論的関係を確立することにより、UQ問題に対する新しい解釈を提供する。
我々はモデル予測を継続的に更新する際の計算上の利点を提供する新しいRacatiベースの方法論を開発した。
論文 参考訳(メタデータ) (2024-04-12T20:54:01Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
本稿では、入力(または事前)測度が部分的に不完全であるシステムに対する最適(最大および無限)不確実性境界について述べる。
本研究では,不確実性最適化問題に対する学習基盤の枠組みを実証する。
本手法は,工学的実践における性能証明と安全性のためのマップ構築に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-28T14:30:53Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z) - Uncertainty Quantification in Scientific Machine Learning: Methods,
Metrics, and Comparisons [1.8197242789718422]
NNは、物理と工学の数学的法則とデータを組み合わせる方法の計算パラダイムを変更している。
NNベースの推論における誤りと不確かさの定量化は、従来の方法よりも複雑である。
本稿では、不確実性モデリング、新しい解法、既存の解法、評価指標、ポストホック改善アプローチを含む包括的フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-19T18:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。