論文の概要: Mention-centered Graph Neural Network for Document-level Relation
Extraction
- arxiv url: http://arxiv.org/abs/2103.08200v1
- Date: Mon, 15 Mar 2021 08:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 14:31:23.371328
- Title: Mention-centered Graph Neural Network for Document-level Relation
Extraction
- Title(参考訳): 文書レベル関係抽出のための言及中心グラフニューラルネットワーク
- Authors: Jiaxin Pan, Min Peng, Yiyan Zhang
- Abstract要約: 我々は, 相互関係関係を推定することで, 相互関係を構築する。
実験は、異なる言及間の接続が文書レベルの関係抽出に重要であることを示している。
- 参考スコア(独自算出の注目度): 2.724649366608364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction aims to discover relations between
entities across a whole document. How to build the dependency of entities from
different sentences in a document remains to be a great challenge. Current
approaches either leverage syntactic trees to construct document-level graphs
or aggregate inference information from different sentences. In this paper, we
build cross-sentence dependencies by inferring compositional relations between
inter-sentence mentions. Adopting aggressive linking strategy, intermediate
relations are reasoned on the document-level graphs by mention convolution. We
further notice the generalization problem of NA instances, which is caused by
incomplete annotation and worsened by fully-connected mention pairs. An
improved ranking loss is proposed to attend this problem. Experiments show the
connections between different mentions are crucial to document-level relation
extraction, which enables the model to extract more meaningful higher-level
compositional relations.
- Abstract(参考訳): ドキュメントレベルの関係抽出は、ドキュメント全体のエンティティ間の関係を見つけることを目的としている。
ドキュメント内の異なる文からエンティティの依存性を構築する方法は、依然として大きな課題です。
現在のアプローチでは、構文木を利用して文書レベルのグラフを構築するか、異なる文から推論情報を集約する。
本稿では,文間参照間の構成関係を推測し,文間依存性を構築する。
積極的なリンク戦略を採用すると、中間関係は畳み込みに言及して文書レベルのグラフ上で推論される。
さらに、NAインスタンスの一般化問題は、不完全なアノテーションによって引き起こされ、完全に接続された参照ペアによって悪化する。
この問題に対応するため、ランキング損失の改善が提案されている。
実験では、異なる言及間の接続は文書レベルの関係抽出に不可欠であり、モデルがより意味のある高レベルの構成関係を抽出できるようにする。
関連論文リスト
- A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
論文 参考訳(メタデータ) (2024-03-12T08:58:07Z) - More than Classification: A Unified Framework for Event Temporal
Relation Extraction [61.44799147458621]
イベント時間関係抽出(ETRE)は通常、マルチラベル分類タスクとして定式化される。
イベントの開始点と終了点を使ってすべての関係を解釈できることを観察する。
本稿では,時間関係を時間点の論理的表現に変換するイベント時間関係抽出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-28T02:09:08Z) - Document-level Relation Extraction with Cross-sentence Reasoning Graph [14.106582119686635]
関係抽出(RE)は、最近、文レベルから文書レベルに移行した。
GRaph情報集約・クロスセンス推論ネットワーク(GRACR)を用いた新しい文書レベルのREモデルを提案する。
実験結果から,GRACRは文書レベルのREの2つの公開データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-03-07T14:14:12Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
文書レベルの関係抽出(DocRE)のための新しいエンコーダ分類器再構成モデルを提案する。
再構築器は、グラフ表現からの基底経路依存性を再構築し、提案されたDocREモデルがトレーニングにおけるエンティティペアと関係をエンコードすることにもっと注意を払っていることを確認する。
大規模docreデータセットにおける実験結果から,提案モデルにより,グラフベースラインにおける関係抽出精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-12-21T14:29:31Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - Double Graph Based Reasoning for Document-level Relation Extraction [29.19714611415326]
文書レベルの関係抽出は、文書内のエンティティ間の関係を抽出することを目的としている。
二重グラフを特徴とするグラフ集約と推論ネットワーク(GAIN)を提案する。
公開データセットの実験であるDocREDは、GAINが以前の最先端技術よりも大幅なパフォーマンス改善(2.85 on F1)を達成したことを示している。
論文 参考訳(メタデータ) (2020-09-29T03:41:01Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。