論文の概要: Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for
Vaccine Development
- arxiv url: http://arxiv.org/abs/2103.11214v1
- Date: Sat, 20 Mar 2021 17:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 11:07:45.224074
- Title: Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for
Vaccine Development
- Title(参考訳): ワクチン開発のためのSARS-CoV-2 B細胞エピトープ予測の不確実性評価
- Authors: Bhargab Ghoshal, Biraja Ghoshal, Stephen Swift, Allan Tucker
- Abstract要約: 臨床医のテクノロジーに対する信頼を得るには、予測にどのくらいの信頼性があるかを知ることも不可欠です。
臨床医のテクノロジーに対する信頼を得るには、予測にどのくらいの信頼性があるかを知ることも不可欠です。
- 参考スコア(独自算出の注目度): 0.36130723421895944
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: B-cell epitopes play a key role in stimulating B-cells, triggering the
primary immune response which results in antibody production as well as the
establishment of long-term immunity in the form of memory cells. Consequently,
being able to accurately predict appropriate linear B-cell epitope regions
would pave the way for the development of new protein-based vaccines. Knowing
how much confidence there is in a prediction is also essential for gaining
clinicians' trust in the technology. In this article, we propose a calibrated
uncertainty estimation in deep learning to approximate variational Bayesian
inference using MC-DropWeights to predict epitope regions using the data from
the immune epitope database. Having applied this onto SARS-CoV-2, it can more
reliably predict B-cell epitopes than standard methods. This will be able to
identify safe and effective vaccine candidates against Covid-19.
- Abstract(参考訳): b細胞エピトープはb細胞を刺激する重要な役割を担い、一次免疫応答を誘発し、抗体産生と記憶細胞の形態における長期免疫の確立をもたらす。
したがって、適切な線形B細胞エピトープ領域を正確に予測できることは、新しいタンパク質ベースのワクチンの開発の道を開くことになる。
予測にどの程度の自信があるかを知ることは、臨床医のこの技術に対する信頼を得るためにも不可欠である。
本稿では,mc-dropweightsを用いた変分ベイズ推定を近似し,免疫エピトープデータベースのデータを用いてエピトープ領域を推定する深層学習における不確実性推定法を提案する。
これをSARS-CoV-2に適用することで、標準的な方法よりも確実にB細胞エピトープを予測することができる。
これにより、Covid-19に対する安全で効果的なワクチン候補を特定できる。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection [6.949493332885247]
ProVaccineは、タンパク質配列と構造を潜在ベクトル表現に統合する、新しいディープラーニングソリューションである。
現在までに最も包括的な免疫原性データセットをコンパイルし、細菌、ウイルス、腫瘍から9,500以上の抗原配列、構造、および免疫原性ラベルを含む。
私たちの研究はワクチン設計に有効なツールを提供し、将来の研究に有用なベンチマークを設定します。
論文 参考訳(メタデータ) (2024-10-03T16:33:35Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
本稿では, 線形B細胞予測と抗体型特異的分類のための, 深層学習に基づく新しいフレームワークを提案する。
そこで本研究では, モデルが抗体の表現を学習するのを助けるために, 固有分解に基づくアミノ酸符号化法を提案する。
最大の公開データベースからキュレートしたデータに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-09-05T09:18:29Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Improved proteasomal cleavage prediction with positive-unlabeled
learning [0.9023847175654603]
本稿では,拡張データセットと正の未ラベル学習のソリッド理論スペクトロメトリを用いて学習した新しい予測器を提案する。
改良された予測能力により、より正確なワクチン開発が可能になる。
論文 参考訳(メタデータ) (2022-09-14T11:29:15Z) - A feasibility study proposal of the predictive model to enable the
prediction of population susceptibility to COVID-19 by analysis of vaccine
utilization for advising deployment of a booster dose [0.0]
SARS-CoV-2 B1.1.529株またはOmicron株が世界中に分布する。
間もなく終わらないことや、より伝染的で有害な変種が現れるまで、時間との戦いになることを懸念する。
ウイルスの増殖を防ぐ最も有望なアプローチの1つは、持続的な高予防接種効果を維持することである。
論文 参考訳(メタデータ) (2022-04-25T16:05:59Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
本稿では,無症候性および死亡個体群に富んだSIR疫学モデルが,流行の進展を確実に予測できるかどうかを論じる。
粒子群最適化(PSO)に基づく機械学習手法を提案する。
予測における散乱の分析は、モデル予測がトレーニングに使用されるデータセットのサイズに非常に敏感であり、さらにデータが必要であることを示している。
論文 参考訳(メタデータ) (2020-04-14T08:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。