論文の概要: A block-sparse Tensor Train Format for sample-efficient high-dimensional
Polynomial Regression
- arxiv url: http://arxiv.org/abs/2104.14255v1
- Date: Thu, 29 Apr 2021 10:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 12:43:27.484012
- Title: A block-sparse Tensor Train Format for sample-efficient high-dimensional
Polynomial Regression
- Title(参考訳): サンプル効率の高い高次元多項式回帰のためのブロックスパーステンソルトレイン形式
- Authors: Michael G\"otte, Reinhold Schneider, Philipp Trunschke
- Abstract要約: 低ランクテンソルは高次元問題の確立された枠組みである。
ブロックスパーシティの概念を含めることで、このフレームワークを拡張することを提案する。
これにより、既知のサンプル結果に合致するようにアンサッツ空間を適応させることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank tensors are an established framework for high-dimensional
least-squares problems. We propose to extend this framework by including the
concept of block-sparsity. In the context of polynomial regression each
sparsity pattern corresponds to some subspace of homogeneous multivariate
polynomials. This allows us to adapt the ansatz space to align better with
known sample complexity results. The resulting method is tested in numerical
experiments and demonstrates improved computational resource utilization and
sample efficiency.
- Abstract(参考訳): 低ランクテンソルは高次元の最小二乗問題の確立された枠組みである。
我々は、ブロック分離の概念を含めることで、このフレームワークを拡張することを提案する。
多項式回帰の文脈では、各空間パターンは等質多変量多項式の部分空間に対応する。
これにより、既知のサンプル複雑性の結果に合致するようにアンサッツ空間を適応させることができる。
その結果,数値実験により計算資源の利用率とサンプル効率が向上した。
関連論文リスト
- Optimal sampling for least-squares approximation [0.8702432681310399]
ランダムサンプルから(重み付けされた)最小二乗近似の解析において、クリスティーフェル関数を重要な量として導入する。
ほぼ最適なサンプル複雑性を持つサンプリング戦略を構築するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2024-09-04T00:06:23Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - Covering Number of Real Algebraic Varieties and Beyond: Improved Bounds and Applications [8.438718130535296]
ユークリッド空間における集合の被覆数について上限を証明する。
ここでは、イムディン・コントによる最もよく知られた一般境界が改善されることが示される。
本稿では,3つの計算応用における結果のパワーについて説明する。
論文 参考訳(メタデータ) (2023-11-09T03:06:59Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Sparse resultant based minimal solvers in computer vision and their
connection with the action matrix [17.31412310131552]
いくつかのカメラ幾何問題に対して、我々の余剰手法は、最先端のGrobnerベースベースの解法よりも小さく、より安定な解法をもたらすことを示した。
コンピュータビジョンにおける最小限の問題に対して、一般的なベースベースの方法に代わる競争力のある代替手段を提供する。
論文 参考訳(メタデータ) (2023-01-16T14:25:19Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
一般相互作用が$J$である超キューブ上の二次定値イジングモデルを考える。
我々の一般的な結果は、低ランクのIsingモデルに対する最初のサンプリングアルゴリズムを示唆している。
論文 参考訳(メタデータ) (2022-02-17T21:43:50Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z) - SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm [64.13217062232874]
SURFは分布を断片的に近似するアルゴリズムである。
実験では最先端のアルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2020-02-22T01:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。