A complete analysis of spin coherence in the full-loop Stern Gerlach
interferometer using non-squeezed and squeezed coherent states of the Quantum
harmonic oscillator
- URL: http://arxiv.org/abs/2105.03785v2
- Date: Sat, 23 Jul 2022 14:07:30 GMT
- Title: A complete analysis of spin coherence in the full-loop Stern Gerlach
interferometer using non-squeezed and squeezed coherent states of the Quantum
harmonic oscillator
- Authors: Yash Lokare
- Abstract summary: We present a rigorous mathematical analysis for the visibility in a general SG interferometer for non-squeezed and squeezed thermal coherent states.
We show that for wave-packet split sizes of the order of microns, masses of the order of 1.0e-14 - 1.0e-15 kg can be used to realize such a proposal for time intervals as high as 0.5 seconds.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the years, quite a few proposals have been put forward by various groups
to exploit the Stern-Gerlach effect to create stable macroscopic spatial
superpositions between micron-sized neutral test masses over appreciably long
time scales. One such proposal put forward by Bose et al. and co-workers in
2017 uses this idea to show that two masses cannot be gravitationally entangled
if not for the presence of a quantum coherent mediator. A key aspect of this
approach involves the measure of the visibility of the SG-interferometer, a
quantity that provides an estimate of the degree of spin coherence that is
conserved over the total interferometric time after the wave-packets are
combined in both, position and momentum space. A successful implementation of
this idea however requires the knowledge of several experimental parameters. To
this end, we present a rigorous mathematical analysis for the visibility in a
general SG interferometer for non-squeezed and squeezed thermal coherent states
of the Quantum harmonic oscillator. Additionally, we derive constraints on the
temperature of the initially prepared wave-packet of the test mass required for
both, the non-squeezed and squeezed coherent states. We show that for
wave-packet split sizes of the order of microns, masses of the order of 1.0e-14
- 1.0e-15 kg can be used to realize such a proposal for time intervals as high
as 0.5 seconds. Our results show that for the squeezed case, the temperatures
required can be scaled up by several orders of magnitude (as opposed to the
non-squeezed case) if one considers a squeezing in the momentum space of the
initially prepared wave-packet.
Related papers
- Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Spatial Qubit Entanglement Witness for Quantum Natured Gravity [0.0]
We show that simple position correlation measurements can yield a spatial qubit witness of entanglement between the masses.
We find that a significant squeezing at a specific stage of the protocol is the principal new requirement.
arXiv Detail & Related papers (2022-11-07T16:18:05Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - A matter wave Rarity-Tapster interferometer to demonstrate non-locality [1.9372327646250074]
We present an experimentally viable approach to demonstrating quantum non-locality in a matter wave system via a Rarity-Tapster interferometer.
We use two $s$-wave scattering halos generated by colliding helium Bose-Einstein condensates.
arXiv Detail & Related papers (2022-06-17T05:42:20Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum-enhanced stochastic phase estimation with SU(1,1) interferometer [3.0440082886830475]
There is a standard quantum limit for phase estimation, which can be obtained with the Mach-Zehnder interferometer and coherent input state.
Here, we show that the method with the SU (1,1) interferometer can achieve the fundamental quantum scaling, surpass the Heisenberg scaling, and surpass the canonical measurement.
arXiv Detail & Related papers (2020-08-07T03:03:36Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.