論文の概要: Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction
Polynomial: the Ratio Net
- arxiv url: http://arxiv.org/abs/2105.11309v2
- Date: Wed, 31 Jan 2024 14:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-01 20:24:38.270457
- Title: Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction
Polynomial: the Ratio Net
- Title(参考訳): 有理分数多項式を持つ高次および非線形直列の効率的な解法:比ネット
- Authors: Chenxin Qin, Ruhao Liu, Maocai Li, Shengyuan Li, Yi Liu, and Chichun
Zhou
- Abstract要約: 本研究では、ニューラルネットワークアーキテクチャを導入して、比重ネットと呼ばれる試行関数を構築することで、異なるアプローチをとる。
実証実験により,提案手法は既存手法と比較して高い効率性を示すことを示した。
比重ネットは、微分方程式の解法効率と有効性を向上させることを約束する。
- 参考スコア(独自算出の注目度): 3.155317790896023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in solving ordinary differential equations (ODEs) with neural
networks have been remarkable. Neural networks excel at serving as trial
functions and approximating solutions within functional spaces, aided by
gradient backpropagation algorithms. However, challenges remain in solving
complex ODEs, including high-order and nonlinear cases, emphasizing the need
for improved efficiency and effectiveness. Traditional methods have typically
relied on established knowledge integration to improve problem-solving
efficiency. In contrast, this study takes a different approach by introducing a
new neural network architecture for constructing trial functions, known as
ratio net. This architecture draws inspiration from rational fraction
polynomial approximation functions, specifically the Pade approximant. Through
empirical trials, it demonstrated that the proposed method exhibits higher
efficiency compared to existing approaches, including polynomial-based and
multilayer perceptron (MLP) neural network-based methods. The ratio net holds
promise for advancing the efficiency and effectiveness of solving differential
equations.
- Abstract(参考訳): 近年,ニューラルネットワークを用いた常微分方程式(ODE)の解法が注目されている。
ニューラルネットワークは、勾配のバックプロパゲーションアルゴリズムによって助けられ、関数空間内の試行機能や近似ソリューションとして機能する。
しかし、高次および非線形ケースを含む複雑なODEの解決には依然として課題があり、効率と効率性の改善の必要性を強調している。
従来の手法は通常、問題解決効率を改善するために確立された知識の統合に依存している。
対照的に、この研究では、比率ネットとして知られる試行機能を構築するための新しいニューラルネットワークアーキテクチャを導入することで、異なるアプローチをとる。
このアーキテクチャは有理分数多項式近似関数、特にパド近似から着想を得ている。
実験により,提案手法は,多項式型および多層型パーセプトロン(mlp)ニューラルネットワークを用いた手法に比べて高い効率を示すことを示した。
比重ネットは、微分方程式の解法効率と有効性を向上させることを約束する。
関連論文リスト
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Enhancing Convolutional Neural Networks with Higher-Order Numerical Difference Methods [6.26650196870495]
畳み込みニューラルネットワーク(CNN)は、人間が多くの現実世界の問題を解決するのを助けることができる。
本稿では,CNNの性能向上を目的とした線形多段階法に基づく重ね合わせ手法を提案する。
論文 参考訳(メタデータ) (2024-09-08T05:13:58Z) - Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Accelerating Fractional PINNs using Operational Matrices of Derivative [0.24578723416255746]
本稿では,分数次物理学情報ニューラルネットワーク(fPINN)の学習を高速化する新しい演算行列法を提案する。
提案手法では、カプトー型分数微分問題において、0alpha1$での分数導関数の高速な計算を容易にする。
提案手法の有効性は,遅延微分方程式 (DDE) や微分代数方程式 (DAE) など,様々な微分方程式にまたがって検証される。
論文 参考訳(メタデータ) (2024-01-25T11:00:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Connections between Numerical Algorithms for PDEs and Neural Networks [8.660429288575369]
偏微分方程式(PDE)とニューラルネットワークの数値アルゴリズム間の多数の構造的関係について検討する。
私たちのゴールは、豊富な数学的基礎をPDEの世界からニューラルネットワークに移すことです。
論文 参考訳(メタデータ) (2021-07-30T16:42:45Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
提案手法を用いて,パラメータの相対的精度を推定できることを示す。
深い学習を伴う偏微分方程式の逆問題における自然な枠組みを提供する。
論文 参考訳(メタデータ) (2021-07-19T02:54:37Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。