論文の概要: Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
- arxiv url: http://arxiv.org/abs/2407.16985v1
- Date: Wed, 24 Jul 2024 04:04:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-25 14:53:14.742779
- Title: Sparse Tensor PCA via Tensor Decomposition for Unsupervised Feature Selection
- Title(参考訳): 教師なし特徴選択のためのテンソル分解によるスパーステンソルPCA
- Authors: Junjing Zheng, Xinyu Zhang, Weidong Jiang,
- Abstract要約: パラメータ行列の投影方向を利用して教師なし特徴選択を行う2つのスパース主成分分析(STPCA)モデルを開発した。
両方のモデルに対して、各サブプロブレムの最適解がエルミート正正半定円錐(HPSD)に落ちることを証明する。
実験結果によると,提案手法は異なるデータテンソルシナリオの処理に適しており,最先端のUFS手法よりも優れていた。
- 参考スコア(独自算出の注目度): 8.391109286933856
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, introducing Tensor Decomposition (TD) methods into unsupervised feature selection (UFS) has been a rising research point. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to minimize the reconstruction error of a data tensor, they don't fully utilize the interpretable and discriminative information in the factor matrices. Moreover, most methods require domain knowledge to perform feature selection. To solve the above problems, we develop two Sparse Tensor Principal Component Analysis (STPCA) models that utilize the projection directions in the factor matrices to perform UFS. The first model extends Tucker Decomposition to a multiview sparse regression form and is transformed into several alternatively solved convex subproblems. The second model formulates a sparse version of the family of Tensor Singular Value Decomposition (T-SVDs) and is transformed into individual convex subproblems. For both models, we prove the optimal solution of each subproblem falls onto the Hermitian Positive Semidefinite Cone (HPSD). Accordingly, we design two fast algorithms based on HPSD projection and prove their convergence. According to the experimental results on two original synthetic datasets (Orbit and Array Signal) and five real-world datasets, the two proposed methods are suitable for handling different data tensor scenarios and outperform the state-of-the-art UFS methods.
- Abstract(参考訳): 近年,教師なし特徴選択(UFS)にテンソル分解法(TD)を導入することが研究の要点となっている。
テンソル構造は、異なるモード間の関係をマイニングし、計算負担を軽減するのに有用である。
しかし、既存の手法では、データテンソルの再構成誤差を最小限に抑えるためにTDを利用するが、係数行列の解釈可能かつ識別的情報を十分に利用していない。
さらに、ほとんどのメソッドは機能選択を行うためにドメイン知識を必要とします。
上記の問題を解決するために,因子行列の投影方向を利用してUFSを行う2つのスパーステンソル主成分分析(STPCA)モデルを開発した。
最初のモデルはタッカー分解をマルチビュースパース回帰形式に拡張し、代わりに解決された凸部分プロブレムに変換する。
第2のモデルはテンソル特異値分解(T-SVD)ファミリーのスパースバージョンを定式化し、個々の凸サブプロブレムに変換する。
どちらのモデルに対しても、各サブプロブレムの最適解がHermitian Positive Semidefinite Cone (HPSD) に落ちることを証明している。
そこで我々はHPSDプロジェクションに基づく2つの高速アルゴリズムを設計し,その収束性を証明する。
2つのオリジナルの合成データセット(OrbitとArray Signal)と5つの実世界のデータセットの実験結果によると、提案手法は異なるデータテンソルシナリオの処理に適している。
関連論文リスト
- Highly Adaptive Ridge [84.38107748875144]
直交可積分な部分微分を持つ右連続函数のクラスにおいて,$n-2/3$自由次元L2収束率を達成する回帰法を提案する。
Harは、飽和ゼロオーダーテンソル積スプライン基底展開に基づいて、特定のデータ適応型カーネルで正確にカーネルリッジレグレッションを行う。
我々は、特に小さなデータセットに対する最先端アルゴリズムよりも経験的性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:06:06Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
交互勾配法(CoNCPD-APG)により最適化された新しい非負のCANDECOMP/PARAFAC分解アルゴリズムを提案する。
提案手法は,低ランク近似をCONCPD-APG法と組み合わせることで,分解品質を損なうことなく計算負担を大幅に削減することができる。
論文 参考訳(メタデータ) (2023-02-10T08:49:36Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - PARAFAC2-based Coupled Matrix and Tensor Factorizations [1.7188280334580195]
本稿では,全てのモードや線形結合に様々な制約を課す可能性を考慮した PARAFAC2 ベースのCMTF モデルを適合させるアルゴリズムフレームワークを提案する。
数値実験により,提案手法は様々な制約や線形結合を用いて,基礎となるパターンを正確に復元することを示した。
論文 参考訳(メタデータ) (2022-10-24T09:20:17Z) - Partial Least Square Regression via Three-factor SVD-type Manifold
Optimization for EEG Decoding [4.0204191666595595]
双グラスマン多様体 (PLSRbiGr) の最適化による部分最小二乗回帰(PLSR)の解法を提案する。
qlPLSRbiGrは、運動画像(MI)における脳波信号を復号する様々な実験と、定常視覚誘発電位(SSVEP)タスクで検証される。
論文 参考訳(メタデータ) (2022-08-09T11:57:02Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
本研究は, モード駆動繊維による3症例の欠失を含む, 4症例の欠失パターンについて紹介する。
本モデルでは, 目的関数の非性にもかかわらず, 乗算器の交互データ演算法を統合することにより, 最適解を導出する。
論文 参考訳(メタデータ) (2022-05-19T08:37:56Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
DID(DID)は、幅広いデータ空間に適用可能なペアワイズな相似性尺度である。
我々は、DIDが理論的研究と実用に関係のある特性を享受していることを証明する。
論文 参考訳(メタデータ) (2022-02-11T13:51:30Z) - Tensor Full Feature Measure and Its Nonconvex Relaxation Applications to
Tensor Recovery [1.8899300124593645]
完全特徴量(FFM)と呼ばれる新しいテンソル間隔尺度を提案する。
これは各次元の特徴次元を同時に記述することができ、タッカーランクとテンソルチューブランクを結びつけることができる。
FFMに基づく2つの効率的なモデルを提案し、提案モデルを解決するために2つの代替乗算器法(ADMM)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-09-25T01:44:34Z) - Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
Segmentation [6.135577623169028]
我々は,ロバスト近似のための半直交埋め込みに,ランダムな特徴選択というアドホックな手法を一般化する。
アブレーション研究の精査により,提案手法はMVTec AD, KolektorSDD, KolektorSDD2, mSTCデータセットに対して,新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2021-05-31T07:02:20Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - A Bayesian Approach with Type-2 Student-tMembership Function for T-S
Model Identification [47.25472624305589]
2型ファジィセットに基づくファジィック回帰クラスタリングは,非スパースデータに対して顕著な結果を示した。
ファジック回帰モデルのための革新的アーキテクチャを示し、スパースデータモデリングのために設計された新しい学生分布に基づく会員関数を提案する。
論文 参考訳(メタデータ) (2020-09-02T05:10:13Z) - A Flexible Optimization Framework for Regularized Matrix-Tensor
Factorizations with Linear Couplings [5.079136838868448]
行列とテンソルの分解を結合するフレキシブルなアルゴリズムフレームワークを提案する。
このフレームワークは、様々な制約、損失関数、線形変換との結合の使用を容易にする。
論文 参考訳(メタデータ) (2020-07-19T06:49:59Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Spectral Learning on Matrices and Tensors [74.88243719463053]
テンソル分解は行列法で欠落する潜伏効果を拾うことができることを示す。
また,効率的なテンソル分解法を設計するための計算手法についても概説する。
論文 参考訳(メタデータ) (2020-04-16T22:53:00Z) - Efficient Structure-preserving Support Tensor Train Machine [0.0]
列車マルチウェイマルチレベルカーネル(TT-MMK)
我々は,ポリアディック分解の単純さ,デュアル構造保存支援機の分類能力,およびTrain Vector近似の信頼性を組み合わせたTrain Multi-way Multi-level Kernel(TT-MMK)を開発した。
実験により,TT-MMK法は通常より信頼性が高く,チューニングパラメータに敏感で,他の最先端技術と比較した場合のSVM分類において高い予測精度が得られた。
論文 参考訳(メタデータ) (2020-02-12T16:35:10Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
深部SVDDにおける超球崩壊を防止するための2つの正則化器を提案する。
第1の正則化器は、標準のクロスエントロピー損失によるランダムノイズの注入に基づいている。
第2の正規化器は、小さすぎるとミニバッチ分散をペナライズする。
論文 参考訳(メタデータ) (2020-01-24T03:44:47Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
結合テンソル分解は、潜在結合因子に由来する事前知識を組み込むことで、結合データ構造を明らかにする。
TRは強力な表現能力を持ち、いくつかの多次元データ処理アプリケーションで成功している。
提案手法は, 合成データに関する数値実験で検証され, 実世界のデータに対する実験結果は, 回収精度の観点から, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-09T02:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。