論文の概要: Quantum Gaussian process regression
- arxiv url: http://arxiv.org/abs/2106.06701v1
- Date: Sat, 12 Jun 2021 07:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-26 21:46:28.308942
- Title: Quantum Gaussian process regression
- Title(参考訳): 量子ガウス過程の回帰
- Authors: Menghan Chen, Gongde Guo, Song Lin and Jing Li
- Abstract要約: 提案する量子アルゴリズムは3つの準アルゴリズムからなる。
1つは平均予測器を効率的に生成する最初の量子準アルゴリズムである。
もう1つは、同じ方法による製品共分散予測器である。
- 参考スコア(独自算出の注目度): 3.4501155479285326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a quantum algorithm based on gaussian process regression model
is proposed. The proposed quantum algorithm consists of three sub-algorithms.
One is the first quantum subalgorithm to efficiently generate mean predictor.
The improved HHL algorithm is proposed to obtain the sign of outcomes.
Therefore, the terrible situation that results is ambiguous in terms of
original HHL algorithm is avoided, which makes whole algorithm more clear and
exact. The other is to product covariance predictor with same method. Thirdly,
the squared exponential covariance matrices are prepared that annihilation
operator and generation operator are simulated by the unitary linear
decomposition Hamiltonian simulation and kernel function vectors is generated
with blocking coding techniques on covariance matrices. In addition, it is
shown that the proposed quantum gaussian process regression algorithm can
achieve quadratic faster over the classical counterpart.
- Abstract(参考訳): 本稿では,ガウス過程回帰モデルに基づく量子アルゴリズムを提案する。
提案する量子アルゴリズムは3つのサブアルゴリズムからなる。
1つは平均予測器を効率的に生成する最初の量子準アルゴリズムである。
結果のサインを得るために改良されたHHLアルゴリズムを提案する。
したがって、元のHHLアルゴリズムでは結果が曖昧であるという恐ろしい状況は避けられ、アルゴリズム全体がより明確で正確なものになる。
もう1つは、同じ方法による製品共分散予測器である。
第3に、二乗指数共分散行列は、ユニタリ線形分解ハミルトニアンシミュレーションにより消滅作用素と生成作用素をシミュレートし、共分散行列上のブロック符号化技術によりカーネル関数ベクトルを生成する。
さらに,提案する量子ガウス過程回帰アルゴリズムは,古典的アルゴリズムよりも高速に二次化できることを示した。
関連論文リスト
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
本稿では, 線形対流拡散方程式を, 新しい近似確率的想像時間進化(PITE)演算子を用いて解く量子アルゴリズムを提案する。
我々は, 対流拡散方程式から得られるハミルトニアンの想像時間進化を実現するために, 明示的な量子回路を構築した。
我々のアルゴリズムは、Harrow-Hassidim-Lloyd (HHL)アルゴリズムに匹敵する結果を与える。
論文 参考訳(メタデータ) (2024-09-27T08:56:21Z) - Classical simulation of non-Gaussian bosonic circuits [0.4972323953932129]
ガウス状態の重ね合わせに適用したボソニックリニア光回路をシミュレートするための高速な古典的アルゴリズムを提案する。
本稿では,回路のモード数とサイズを正確にシミュレーションするアルゴリズムを提案する。
また、この数で実行が2次となる高速な近似ランダム化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-27T23:52:35Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Classical and Quantum Iterative Optimization Algorithms Based on Matrix
Legendre-Bregman Projections [1.5736899098702972]
エルミート行列空間上で定義されたルジャンドル・ブレーグマン射影について考察し,それに基づいて反復最適化アルゴリズムを設計する。
本稿では,ブレグマン射影アルゴリズムと近似的ブラグマン射影アルゴリズムについて検討する。
特に、近似反復アルゴリズムは、最大エントロピー推論のための一般化反復スケーリング(GIS)アルゴリズムの非可換バージョンをもたらす。
論文 参考訳(メタデータ) (2022-09-28T15:59:08Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
Apsi(textbfr)=f(textbfr)$ という形の非等質線型偏微分方程式を解くための量子アルゴリズムを提案する。
これらの成果により、現代の技術に基づく量子アルゴリズムの実験的実装が容易になった。
論文 参考訳(メタデータ) (2022-05-11T14:29:39Z) - Gradient-Free optimization algorithm for single-qubit quantum classifier [0.3314882635954752]
量子デバイスによるバレンプラトーの影響を克服するために、勾配のない最適化アルゴリズムを提案する。
提案アルゴリズムは分類タスクに対して実証され,Adamを用いた手法と比較される。
提案アルゴリズムはAdamよりも高速に精度を向上できる。
論文 参考訳(メタデータ) (2022-05-10T08:45:03Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。