論文の概要: Quantum-inspired event reconstruction with Tensor Networks: Matrix
Product States
- arxiv url: http://arxiv.org/abs/2106.08334v1
- Date: Tue, 15 Jun 2021 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:09:14.580515
- Title: Quantum-inspired event reconstruction with Tensor Networks: Matrix
Product States
- Title(参考訳): テンソルネットワークを用いた量子インスピレーション型イベント再構成:マトリックス製品状態
- Authors: Jack Y. Araz and Michael Spannowsky
- Abstract要約: ニューラルネットワークは量子力学の概念を機械学習技術に結びつけるのに理想的な手段であることを示す。
エンタングルメントのエントロピーは,ネットワークの学習内容の解釈に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Networks are non-trivial representations of high-dimensional tensors,
originally designed to describe quantum many-body systems. We show that Tensor
Networks are ideal vehicles to connect quantum mechanical concepts to machine
learning techniques, thereby facilitating an improved interpretability of
neural networks. This study presents the discrimination of top quark signal
over QCD background processes using a Matrix Product State classifier. We show
that entanglement entropy can be used to interpret what a network learns, which
can be used to reduce the complexity of the network and feature space without
loss of generality or performance. For the optimisation of the network, we
compare the Density Matrix Renormalization Group (DMRG) algorithm to stochastic
gradient descent (SGD) and propose a joined training algorithm to harness the
explainability of DMRG with the efficiency of SGD.
- Abstract(参考訳): テンソルネットワークは、元来量子多体系を記述するために設計された高次元テンソルの非自明な表現である。
テンソルネットワークは、量子力学の概念を機械学習技術に結びつけ、ニューラルネットワークの解釈性を向上させるのに理想的な手段であることを示す。
本研究では, 行列生成状態分類器を用いてQCD背景過程におけるトップクォーク信号の識別を行う。
エンタングルメントのエントロピーは,ネットワークの学習内容の解釈に利用でき,一般性や性能を損なうことなく,ネットワークと特徴空間の複雑さを低減できることを示す。
ネットワークの最適化のために、密度行列再正規化グループ(DMRG)アルゴリズムを確率勾配降下(SGD)アルゴリズムと比較し、DMRGの説明可能性とSGDの効率性を利用するための合同トレーニングアルゴリズムを提案する。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Deep learning for the design of non-Hermitian topolectrical circuits [8.960003862907877]
深層学習における多層パーセプトロン(MLP)と畳み込みニューラルネットワーク(CNN)を用いたアルゴリズムを導入し,非エルミートハミルトニアンの固有値のゆらぎを予測する。
本研究は,学習データに基づく非エルミート系の大域的トポロジカル特性の抽出におけるディープラーニングネットワークの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-02-15T14:41:55Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - Dense Hebbian neural networks: a replica symmetric picture of supervised
learning [4.133728123207142]
我々は教師が指導する高密度で連想的なニューラルネットについて検討する。
スピングラスの統計力学およびモンテカルロシミュレーションによる数値計算能力の解析を行った。
論文 参考訳(メタデータ) (2022-11-25T13:37:47Z) - Automatic structural optimization of tree tensor networks [0.0]
そこで本稿では,等距離線を局所的に再接続することで,ネットワーク構造を自動的に最適化するTTNアルゴリズムを提案する。
システムの基底状態に埋め込まれた絡み合い構造を,最適化TTNにおける完全二分木として効率的に可視化できることを実証した。
論文 参考訳(メタデータ) (2022-09-07T14:51:39Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
大規模アクセスはIoT(Internet of Things)ネットワークにおける重要な設計課題である。
我々は、マルチアンテナベースステーション(BS)と多数の単一アンテナIoTデバイスを備えたIoTネットワークの無許可アップリンク伝送を検討する。
本稿では,低計算複雑性と高ロバスト性を実現するために,ディープニューラルネットワークに基づく新しいアルゴリズムアンローリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-19T05:23:05Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。