論文の概要: Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning
- arxiv url: http://arxiv.org/abs/2106.09004v1
- Date: Thu, 10 Jun 2021 13:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-20 16:10:58.499213
- Title: Learning effective stochastic differential equations from microscopic
simulations: combining stochastic numerics and deep learning
- Title(参考訳): 微視的シミュレーションによる効果的な確率微分方程式の学習--確率数値と深層学習を組み合わせる
- Authors: Felix Dietrich and Alexei Makeev and George Kevrekidis and Nikolaos
Evangelou and Tom Bertalan and Sebastian Reich and Ioannis G. Kevrekidis
- Abstract要約: ニューラルネットワークを用いた実効SDEにおけるドリフトと拡散関数を近似した。
当社のアプローチでは、長いトラジェクトリを必要とせず、散在するスナップショットデータで動作し、スナップショット毎に異なるタイムステップを自然に処理するように設計されています。
- 参考スコア(独自算出の注目度): 0.46180371154032895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We identify effective stochastic differential equations (SDE) for coarse
observables of fine-grained particle- or agent-based simulations; these SDE
then provide coarse surrogate models of the fine scale dynamics. We approximate
the drift and diffusivity functions in these effective SDE through neural
networks, which can be thought of as effective stochastic ResNets. The loss
function is inspired by, and embodies, the structure of established stochastic
numerical integrators (here, Euler-Maruyama and Milstein); our approximations
can thus benefit from error analysis of these underlying numerical schemes.
They also lend themselves naturally to "physics-informed" gray-box
identification when approximate coarse models, such as mean field equations,
are available. Our approach does not require long trajectories, works on
scattered snapshot data, and is designed to naturally handle different time
steps per snapshot. We consider both the case where the coarse collective
observables are known in advance, as well as the case where they must be found
in a data-driven manner.
- Abstract(参考訳): 粒度粒子またはエージェントベースシミュレーションの粗い観測値に対する有効確率微分方程式 (SDE) を同定し, より微細な力学の粗いサロゲートモデルを提供する。
ニューラルネットワークによるこれらの有効SDEのドリフトと拡散度関数を近似し,有効確率論的ResNetとみなすことができる。
損失関数は、確立された確率的数値積分器(以下、オイラー・マルヤマとミルスタイン)の構造にインスパイアされ、具体化され、我々の近似は、これらの基礎となる数値スキームの誤り解析の恩恵を受けることができる。
また、平均場方程式(英語版)のような近似粗いモデルが利用可能である場合、自然に "physics-informed" グレーボックスの識別にも役立つ。
当社のアプローチでは、長いトラジェクトリを必要とせず、分散スナップショットデータで動作し、スナップショット毎に異なるタイムステップを自然に処理するように設計されています。
私たちは、粗い集合的可観測性が事前に分かっている場合と、データ駆動の方法で見つけなければならない場合の両方を考えます。
関連論文リスト
- A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems [10.820654486318336]
本研究では,未知の微分方程式(SDE)をデータを用いて学習するための学習自由条件拡散モデルを提案する。
提案手法はSDEのモデリングにおける計算効率と精度の重要な課題に対処する。
学習されたモデルは、未知のシステムの短期的および長期的両方の挙動を予測する上で、大幅な改善を示す。
論文 参考訳(メタデータ) (2024-10-04T03:07:36Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Noise in the reverse process improves the approximation capabilities of
diffusion models [27.65800389807353]
生成モデリングにおける最先端技術であるスコアベース生成モデリング(SGM)では、リバースプロセスは決定論的手法よりも優れた性能を発揮することが知られている。
本稿では,ニューラル常微分方程式 (ODE) とニューラルディメンション方程式 (SDE) を逆過程として比較し,この現象の核となる。
我々は、Fokker-Planck方程式の軌跡を近似するニューラルSDEの能力を解析し、ニューラルティの利点を明らかにする。
論文 参考訳(メタデータ) (2023-12-13T02:39:10Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling [0.0]
適応型感受性感染症(SIS)疫学ネットワークのチップポイント集団動態を,データ駆動型機械学習支援方式で検討した。
複素実効微分方程式(eSDE)を物理的に有意な粗い平均場変数で同定する。
本研究では, 頻繁な現象の統計を, 繰り返しブルート力シミュレーションと, 確立された数学的・計算ツールを用いて研究する。
論文 参考訳(メタデータ) (2023-11-01T19:33:03Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
本稿では,データからのスパース制御方程式の深部生成モデルを用いた動的モデリングフレームワークHyperSINDyを紹介する。
一度訓練すると、HyperSINDyは、係数が白色雑音によって駆動される微分方程式を介して力学を生成する。
実験では、HyperSINDyはデータと一致するように学習度をスケーリングすることで、基底的真理支配方程式を復元する。
論文 参考訳(メタデータ) (2023-10-07T14:41:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
本稿では,SDEのパラメータを組み込みのSDE統合方式でニューラルネットワークで表現するデータ駆動手法を提案する。
このアルゴリズムは、幾何学的ブラウン運動とロレンツ-63モデルのバージョンに適用される。
論文 参考訳(メタデータ) (2021-05-18T11:41:34Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。