論文の概要: Orthogonal projection-based regularization for efficient model augmentation
- arxiv url: http://arxiv.org/abs/2501.05842v2
- Date: Tue, 22 Apr 2025 08:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-23 19:51:40.203432
- Title: Orthogonal projection-based regularization for efficient model augmentation
- Title(参考訳): 直交射影に基づく効率的なモデル拡張のための正規化
- Authors: Bendegúz M. Györök, Jan H. Hoekstra, Johan Kon, Tamás Péni, Maarten Schoukens, Roland Tóth,
- Abstract要約: ディープラーニングに基づく非線形システム同定は、実際に信頼性が高く高精度なモデルを作成する能力を示している。
これらのブラックボックスモデルは物理的解釈性に欠けており、学習のかなりの部分は、既に期待されていた、あるいは既知のシステムの振る舞いを捉えるのに費やされている。
潜在的な解決策は、物理に基づくモデリングとディープラーニングの識別の強みを組み合わせて、そのような以前の物理知識を直接モデル構造に統合することである。
- 参考スコア(独自算出の注目度): 2.6071013155805556
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and a considerable part of the learning effort is often spent on capturing already expected/known behavior of the system, that can be accurately described by first-principles laws of physics. A potential solution is to directly integrate such prior physical knowledge into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel, i.e., additively. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning and even model accuracy in learning-based augmentation of nonlinear baseline models.
- Abstract(参考訳): ディープラーニングに基づく非線形システム同定は、実際に信頼性が高く高精度なモデルを作成する能力を示している。
しかしながら、これらのブラックボックスモデルは物理的解釈可能性に欠けており、学習のかなりの部分は、既に期待されていた、あるいは既知のシステムの振る舞いを捉えるために費やされている。
潜在的な解決策は、物理に基づくモデリングとディープラーニングに基づく識別の強みを組み合わせることで、そのような以前の物理知識を直接モデル構造に統合することである。
最も一般的なアプローチは、追加的なモデル拡張構造を使用することで、物理ベースのコンポーネントと機械学習(ML)コンポーネントが並列、すなわち加算的に接続される。
しかし、そのようなモデルは過度にパラメータ化され、それらを訓練することは困難であり、物理に基づく部分の解釈性が失われる可能性がある。
この課題を克服するために,非線形ベースラインモデルの学習に基づく拡張において,パラメータ学習やモデル精度を向上する直交射影ベース正規化手法を提案する。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Physics-Guided Deep Learning for Dynamical Systems: A survey [5.733401663293044]
伝統的な物理学に基づくモデルは解釈可能であるが、厳密な仮定に依存している。
ディープラーニングは、複雑なパターンを効率的に認識し、非線形力学をエミュレートするための新しい代替手段を提供する。
物理学に基づくモデリングと最先端のDLモデルの両方を最大限に活用して、科学的な問題を解決することを目指している。
論文 参考訳(メタデータ) (2021-07-02T20:59:03Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。