Thin-Film InGaAs Metamorphic Buffer for telecom C-band InAs Quantum Dots
and Optical Resonators on GaAs Platform
- URL: http://arxiv.org/abs/2107.13371v2
- Date: Mon, 2 Aug 2021 14:01:55 GMT
- Title: Thin-Film InGaAs Metamorphic Buffer for telecom C-band InAs Quantum Dots
and Optical Resonators on GaAs Platform
- Authors: Robert Sittig, Cornelius Nawrath, Sascha Kolatschek, Stephanie Bauer,
Richard Schaber, Jiasheng Huang, Ponraj Vijayan, Simone Luca Portalupi,
Michael Jetter, Peter Michler
- Abstract summary: Single-photon emission at 1550nm from InAs QDs deposited on top of a novel thin-film MMB is demonstrated.
Advances in the epitaxial growth of QD/MMB structures form the basis for the fabrication of high-quality telecom non-classical light sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The GaAs-based material system is well-known for the implementation of InAs
quantum dots (QDs) with outstanding optical properties. However, these dots
typically emit at a wavelength of around 900nm. The insertion of a metamorphic
buffer (MMB) can shift the emission to the technologically attractive telecom
C-band range centered at 1550nm. However, the thickness of common MMB designs
limits their compatibility with most photonic resonator types. Here we report
on the MOVPE growth of a novel InGaAs MMB with a non-linear indium content
grading profile designed to maximize plastic relaxation within minimal layer
thickness. Single-photon emission at 1550nm from InAs QDs deposited on top of
this thin-film MMB is demonstrated. The strength of the new design is proven by
integrating it into a bullseye cavity via nano-structuring techniques. The
presented advances in the epitaxial growth of QD/MMB structures form the basis
for the fabrication of high-quality telecom non-classical light sources as a
key component of photonic quantum technologies.
Related papers
- Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - Purcell-enhanced single-photon emission from InAs/GaAs quantum dots coupled to broadband cylindrical nanocavities [0.0]
In this study, we demonstrate up to a 38-fold enhancement in the emission rate of InAs QDs by coupling them to metal-clad GaAs nanopillars.
These cavities, featuring a sub-wavelength mode volume of 4.5x10-4 (lambda/n)3 and quality factor of 62, enable Purcell-enhanced single-photon emission across a large bandwidth of 15 nm.
arXiv Detail & Related papers (2024-07-16T12:06:30Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Fine structure splitting analysis of cavity-enhanced telecom-wavelength
InAs quantum dots grown on a GaAs(111)A vicinal substrate [0.0]
Entangled light can be generated by solid state quantum emitters with naturally low fine structure splitting.
We present droplet epitaxy of telecom-wavelength InAs QDs within an optical cavity on a vicinal (2deg miscut) GaAs(111)A substrate.
arXiv Detail & Related papers (2022-02-23T11:28:52Z) - Narrow optical transitions in erbium-implanted silicon waveguides [0.0]
We show that erbium dopants can be reproducibly integrated at well-defined lattice sites by implantation into pure silicon.
We achieve a narrow inhomogeneous broadening, less than 1 GHz, strong optical transitions, and an outstanding optical coherence even at temperatures of 8 K.
arXiv Detail & Related papers (2021-08-11T09:44:12Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Erbium dopants in silicon nanophotonic waveguides [0.0]
We present resonant spectroscopy of implanted erbium dopants in nanophotonic waveguides.
We observe erbium incorporation at well-defined lattice sites with a thousandfold reduced inhomogeneous broadening of about 1 GHz.
Our study thus introduces a novel materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing.
arXiv Detail & Related papers (2020-05-04T18:13:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.