論文の概要: Design-Driven Requirements for Computationally Co-Creative Game AI
Design Tools
- arxiv url: http://arxiv.org/abs/2107.13738v1
- Date: Thu, 29 Jul 2021 04:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 13:12:12.472463
- Title: Design-Driven Requirements for Computationally Co-Creative Game AI
Design Tools
- Title(参考訳): 計算協調型ゲームai設計ツールの設計駆動要件
- Authors: Nathan Partlan, Erica Kleinman, Jim Howe, Sabbir Ahmad, Stacy
Marsella, Magy Seif El-Nasr
- Abstract要約: ゲームAIデザイナの目標やそのようなツールに対する期待を分類し分析する参加型デザイン研究を提案する。
我々は,ゲームAI設計と共同創造ツールの設計との深いつながりと,今後の共同創造ツールの研究・開発への示唆を明らかにする。
- 参考スコア(独自算出の注目度): 6.719205507619887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Game AI designers must manage complex interactions between the AI character,
the game world, and the player, while achieving their design visions.
Computational co-creativity tools can aid them, but first, AI and HCI
researchers must gather requirements and determine design heuristics to build
effective co-creative tools. In this work, we present a participatory design
study that categorizes and analyzes game AI designers' workflows, goals, and
expectations for such tools. We evince deep connections between game AI design
and the design of co-creative tools, and present implications for future
co-creativity tool research and development.
- Abstract(参考訳): ゲームAIデザイナは、AIキャラクタ、ゲームワールド、プレイヤー間の複雑なインタラクションを管理しながら、設計ビジョンを達成する必要がある。
しかし第一に、aiとhciの研究者は要求を収集し、効果的な共同創造ツールを構築するために設計ヒューリスティックスを決定する必要がある。
本稿では,ゲームai設計者のワークフロー,目標,期待を分類し,分析する参加型デザイン研究について述べる。
我々は,ゲームai設計と共同創造ツールの設計との深いつながりを実証し,今後の共同創造ツール研究開発への示唆を示す。
関連論文リスト
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - What's Next? Exploring Utilization, Challenges, and Future Directions of AI-Generated Image Tools in Graphic Design [2.0616038498705858]
本研究は、グラフィックデザインにおけるAI生成画像ツールの現在の使用状況、課題、今後のニーズを理解するために、様々な経験レベルを持つ7人のデザイナーと半構造化インタビューを行った。
私たちの調査結果が示すように、AIツールはデザインにおける創造的なパートナとして機能し、人間の創造性を高め、戦略的洞察を提供し、チームのコラボレーションとコミュニケーションを促進する。
この発見は、エンジニアがグラフィックデザイナのニーズに合うように、これらのツールの最適化を支援することを目的とした、AI生成イメージツールの今後の開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2024-06-19T10:51:56Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
論文 参考訳(メタデータ) (2023-10-02T15:34:08Z) - Exploring Challenges and Opportunities to Support Designers in Learning
to Co-create with AI-based Manufacturing Design Tools [31.685493295306387]
AIベースのデザインツールは、複雑な製造や設計タスクでエンジニアリングや工業デザイナーを支援するために、プロのソフトウェアで急速に普及している。
これらのツールは、伝統的なコンピュータ支援デザインツールよりもエージェント的な役割を担い、しばしば「コ・クリエーター」として表現される。
これまでのところ、エンジニアリングデザイナがAIベースのデザインツールでどのように働くかはほとんどわかっていません。
論文 参考訳(メタデータ) (2023-03-01T02:57:05Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
設計者は、与えられた目的の集合を最大化する設計パラメータの組み合わせを見つけるよう求められる設計最適化タスクに苦労すると言われている。
モデルベースの計算設計アルゴリズムは、設計中に設計例を生成することでデザイナを支援する。
一方、補助のためのブラックボックスメソッドは、あらゆる設計問題に対処できる。
論文 参考訳(メタデータ) (2022-04-15T20:40:43Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Towards A Process Model for Co-Creating AI Experiences [16.767362787750418]
テクノロジーをデザイン素材として考えることは、デザイナーにとって魅力的です。
材料として、AIは設計プロセス自体の一部としてその特性が現れるため、このアプローチに抵抗します。
10組のデザイナーとエンジニアによるデザイン研究により、共創過程を調査します。
論文 参考訳(メタデータ) (2021-04-15T16:53:34Z) - Guru, Partner, or Pencil Sharpener? Understanding Designers' Attitudes
Towards Intelligent Creativity Support Tools [4.812445272764651]
創造支援ツール(CST)は、人間の創造性を高めることを目的としているが、創造性の深い個人的、主観的な性質は、普遍的な支援ツールの設計を困難にしている。
人工知能(AI)と機械学習(ML)技術は、個人の創造スタイルを学習し、適応する「知的な」CSTを作成する手段を提供する。
本稿では,AIツールとの協調に対する肯定的かつ実践的な態度を示す,プロのデザイナーを対象にした調査結果について述べる。
論文 参考訳(メタデータ) (2020-07-09T14:52:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。