論文の概要: Wavelet neural operator: a neural operator for parametric partial
differential equations
- arxiv url: http://arxiv.org/abs/2205.02191v1
- Date: Wed, 4 May 2022 17:13:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 16:24:37.267422
- Title: Wavelet neural operator: a neural operator for parametric partial
differential equations
- Title(参考訳): wavelet neural operator:パラメトリック偏微分方程式のためのニューラルネットワーク
- Authors: Tapas Tripura and Souvik Chakraborty
- Abstract要約: WNO(Wavelet Neural Operator)と呼ばれる新しい演算子学習アルゴリズムを提案する。
WNOは、関数の時間周波数局所化におけるウェーブレットの優位性を活用し、空間領域におけるパターンの正確な追跡を可能にする。
提案手法は、利用可能な歴史的データに基づいて地球の気温を予測するデジタルツインを構築するために用いられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With massive advancements in sensor technologies and Internet-of-things, we
now have access to terabytes of historical data; however, there is a lack of
clarity in how to best exploit the data to predict future events. One possible
alternative in this context is to utilize operator learning algorithm that
directly learn nonlinear mapping between two functional spaces; this
facilitates real-time prediction of naturally arising complex evolutionary
dynamics. In this work, we introduce a novel operator learning algorithm
referred to as the Wavelet Neural Operator (WNO) that blends integral kernel
with wavelet transformation. WNO harnesses the superiority of the wavelets in
time-frequency localization of the functions and enables accurate tracking of
patterns in spatial domain and effective learning of the functional mappings.
Since the wavelets are localized in both time/space and frequency, WNO can
provide high spatial and frequency resolution. This offers learning of the
finer details of the parametric dependencies in the solution for complex
problems. The efficacy and robustness of the proposed WNO are illustrated on a
wide array of problems involving Burger's equation, Darcy flow, Navier-Stokes
equation, Allen-Cahn equation, and Wave advection equation. Comparative study
with respect to existing operator learning frameworks are presented. Finally,
the proposed approach is used to build a digital twin capable of predicting
Earth's air temperature based on available historical data.
- Abstract(参考訳): センサ技術やiot(internet-of-things)の大幅な進歩によって,テラバイト単位の履歴データへのアクセスが可能になったのです。
この文脈で可能な選択肢の1つは、2つの関数空間間の非線形マッピングを直接学習する演算子学習アルゴリズムを使用することである。
本研究では、積分カーネルとウェーブレット変換を融合したウェーブレットニューラル演算子(WNO)と呼ばれる演算子学習アルゴリズムを提案する。
WNOは、関数の時間周波数局所化におけるウェーブレットの優位性を活用し、空間領域におけるパターンの正確な追跡と関数マッピングの効果的な学習を可能にする。
ウェーブレットは時間/空間と周波数の両方で局所化されているため、WNOは空間および周波数の分解能が高い。
これにより、複雑な問題に対するソリューションにおけるパラメトリック依存関係のより詳細な詳細を学ぶことができる。
提案するwnoの有効性と頑健性は,バーガー方程式,ダーシー流,ナビエ・ストークス方程式,アレン・カーン方程式,ウェーブ・アドベクション方程式など幅広い問題に適用できる。
既存の演算子学習フレームワークとの比較研究を行った。
最後に,提案手法は,利用可能な歴史データに基づいて地球の気温を予測できるデジタル双生児の構築に用いられている。
関連論文リスト
- Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
本稿では,ボヒナー空間間のマップを学習する新しい時間的ニューラル演算子(SFNO)と,これらの問題に対処する新しい学習フレームワークを提案する。
この新しいパラダイムは、従来の数値PDE理論と技法の知恵を利用して、一般的に採用されているエンドツーエンドのニューラル演算子のトレーニングと評価のパイプラインを洗練する。
2次元NSEのための一般的なベンチマークの数値実験は、エンドツーエンド評価や従来の数値PDEソルバと比較して計算効率と精度の両方が大幅に向上した。
論文 参考訳(メタデータ) (2024-05-27T14:33:06Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Waveformer for modelling dynamical systems [1.0878040851638]
動的システムの学習ソリューションを学習するための新しい演算子学習手法である「ウェーブフォーマ」を提案する。
提案した波形変換器はウェーブレット変換を利用して解場と変圧器の空間的マルチスケールな挙動を捉える。
本稿では,提案するWaveformerが解演算子を高精度に学習し,既存の最先端演算子学習アルゴリズムを最大1桁の精度で上回っていることを示す。
論文 参考訳(メタデータ) (2023-10-08T03:34:59Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
球面幾何学の演算子を学習するための球面FNO(SFNO)を紹介する。
SFNOは、気候力学の機械学習に基づくシミュレーションに重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-06T16:27:17Z) - Physics informed WNO [0.0]
パラメトリック偏微分方程式(PDE)系の解演算子をラベル付きトレーニングデータなしで学習するための物理インフォームドウェーブレット演算子(WNO)を提案する。
このフレームワークの有効性は、工学と科学の様々な分野に関連する4つの非線形ニューラルネットワークで検証され、実証されている。
論文 参考訳(メタデータ) (2023-02-12T14:31:50Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
本稿では,FNOに基づく解法を効率的に学習するための新しいフレームワークであるFourier Neural operator (PFNO)を提案する。
数値実験により、複雑な速度モデルによるFNOとPFNOの精度が示された。
PFNOは、従来の有限差分法と比較して、大規模なテストデータセットの計算効率が高いことを認めている。
論文 参考訳(メタデータ) (2022-09-25T22:25:57Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
我々は、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを開発した。
訓練されたニューラル演算子は、任意の速度構造やソース位置について、無視可能な時間で解を計算することができる。
本手法を2次元音響波動方程式を用いて説明し, 地震トモグラフィへの適用性を実証する。
論文 参考訳(メタデータ) (2021-08-11T19:17:39Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。