Variational Quantum Reinforcement Learning via Evolutionary Optimization
- URL: http://arxiv.org/abs/2109.00540v1
- Date: Wed, 1 Sep 2021 16:36:04 GMT
- Title: Variational Quantum Reinforcement Learning via Evolutionary Optimization
- Authors: Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan,
Ying-Jer Kao
- Abstract summary: We present two frameworks of deep quantum RL tasks using a gradient-free evolution optimization.
We propose a hybrid framework where the quantum RL agents are equipped with hybrid tensor network-variational quantum circuit (TN-VQC) architecture.
This allows us to perform quantum RL on the MiniGrid environment with 147-dimensional inputs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advance in classical reinforcement learning (RL) and quantum
computation (QC) points to a promising direction of performing RL on a quantum
computer. However, potential applications in quantum RL are limited by the
number of qubits available in the modern quantum devices. Here we present two
frameworks of deep quantum RL tasks using a gradient-free evolution
optimization: First, we apply the amplitude encoding scheme to the Cart-Pole
problem; Second, we propose a hybrid framework where the quantum RL agents are
equipped with hybrid tensor network-variational quantum circuit (TN-VQC)
architecture to handle inputs with dimensions exceeding the number of qubits.
This allows us to perform quantum RL on the MiniGrid environment with
147-dimensional inputs. We demonstrate the quantum advantage of parameter
saving using the amplitude encoding. The hybrid TN-VQC architecture provides a
natural way to perform efficient compression of the input dimension, enabling
further quantum RL applications on noisy intermediate-scale quantum devices.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Assisted quantum simulation of open quantum systems [0.0]
We introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology.
We present two quantum-assisted quantum algorithms for simulating open quantum systems.
arXiv Detail & Related papers (2023-02-26T11:41:02Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - Natural parameterized quantum circuit [0.0]
We introduce the natural parameterized quantum circuit (NPQC) that can be initialised with a Euclidean quantum geometry.
For a general class of quantum circuits, the NPQC has the minimal quantum Cram'er-Rao bound.
Our results can be used to enhance currently available quantum processors.
arXiv Detail & Related papers (2021-07-29T14:54:04Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.