論文の概要: Optimizing Quantum Variational Circuits with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2109.03188v1
- Date: Tue, 7 Sep 2021 16:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 14:26:19.014985
- Title: Optimizing Quantum Variational Circuits with Deep Reinforcement Learning
- Title(参考訳): 深部強化学習による量子変分回路の最適化
- Authors: Owen Lockwood
- Abstract要約: 量子変動回路における勾配に基づく最適化ルーチンを強化するため, 深部強化学習における現代的手法の可能性を評価する。
強化学習の強化は雑音環境における勾配降下より一貫して優れることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum Machine Learning (QML) is considered to be one of the most promising
applications of near term quantum devices. However, the optimization of quantum
machine learning models presents numerous challenges arising from the
imperfections of hardware and the fundamental obstacles in navigating an
exponentially scaling Hilbert space. In this work, we evaluate the potential of
contemporary methods in deep reinforcement learning to augment gradient based
optimization routines in quantum variational circuits. We find that
reinforcement learning augmented optimizers consistently outperform gradient
descent in noisy environments. All code and pretrained weights are available to
replicate the results or deploy the models at
https://github.com/lockwo/rl_qvc_opt.
- Abstract(参考訳): 量子機械学習(QML)は、近未来の量子デバイスの最も有望な応用の1つと考えられている。
しかし、量子機械学習モデルの最適化は、ハードウェアの不完全性や、指数関数的にスケールするヒルベルト空間をナビゲートする際の根本的な障害から生じる多くの課題を示す。
本研究では,量子変分回路における勾配に基づく最適化ルーチンを強化するために,深層強化学習における現代手法の可能性を評価する。
強化学習強化最適化器は雑音環境下での勾配降下よりも一貫して優れていた。
結果の複製や、https://github.com/lockwo/rl_qvc_optでモデルのデプロイには、すべてのコードとトレーニング済みのウェイトが利用できる。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
我々は、量子勾配を利用して勾配型コスト関数のPQC学習を強化するネスト最適化モデルを導入する。
我々の手法は量子アルゴリズムを用いて、PQC学習における永続的な課題である勾配の消失のタイプを特定し、克服する。
論文 参考訳(メタデータ) (2024-09-30T07:50:47Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Policy Gradient Algorithm with Optimized Action Decoding [1.3946033794136758]
動作選択に必要な古典的後処理を最適化するための,新しい品質指標を提案する。
この手法により,5キュービットのハードウェアデバイス上で,フルトレーニングルーチンの実行に成功した。
論文 参考訳(メタデータ) (2022-12-13T15:42:10Z) - QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning [4.134992977596645]
本稿では、量子コンピュータ上での勾配ダイナミクスの効率的な予測に交互アルゴリズムを活用する新しいフレームワークQuACKを提案する。
量子最適化と機械学習の幅広い応用において、勾配に基づく最適化を加速するQuACKの驚くべき能力を示す。
論文 参考訳(メタデータ) (2022-11-02T17:59:25Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
変分量子アルゴリズム(VQA)は、短期量子コンピュータの効率的な利用を約束する。
量子状態学習のためのVQAを最適に訓練する方法を示す。
量子機械学習におけるガウスカーネルの応用を提案する。
論文 参考訳(メタデータ) (2021-04-29T17:54:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。